Pricing and Hedging in Affine Models with Possibility of Default

Alexander Wugalter
(joint work with Patrick Cheridito)

Princeton-Lausanne Workshop
Lausanne, Switzerland

May, 14 2011
Affine Models with Default

1. Model

2. Pricing

3. Hedging
Outline

1 Model

2 Pricing

3 Hedging
Motivation

Main risk factors for equity derivatives pricing:
- stock returns
- risk of default (of the underlying)
- interest rates
- volatility.

Assets needed for a “perfect” hedge of an equity derivative:
- stock
- corporate bonds (or CDS)
- government bonds
- liquid vanilla options.
Notation

- Conservative affine process \((X_t)_{t \geq 0}\) on \(D = \mathbb{R}_+^m \times \mathbb{R}^n\), \(N = m + n\)
- \(\mathcal{I} = \{1, \ldots, m\}\), \(\mathcal{J} = \{m + 1, \ldots, N\}\)
- Standard Poisson Process \((N_t)_{t \geq 0}\) independent from \((X_t)_{t \geq 0}\)
- \(\mathbb{P}^x[\cdot]\): risk-neutral measure (conditional on \(X_0 = x \in D\))
- \(\mathbb{E}^x[\cdot]\): conditional expectation \(\mathbb{E}[\cdot|X_0 = x]\)
- \(\langle \cdot, \cdot \rangle\): Euclidean scalar product on \(\mathbb{C}^N\), i.e.

\[
\forall x, y \in \mathbb{C}^N : \langle x, y \rangle = \sum_{i=1}^{N} x_i y_i.
\]
Stock, interest rates and default

- Stock price:
 \[S_t = \exp(s_t + R_t + \Lambda_t)1_{\{t<\tau\}} \]

- Log stock evolution (before interest rates and adjustment for default):
 \[s_t = e + \langle \varepsilon, X_t \rangle \]

- Interest rates:
 \[r_t = d + \langle \delta, X_t, \mathcal{I} \rangle, \quad (d, \delta) \in \mathbb{R}_+ \times \mathbb{R}_+^m, \]
 \[R_t = \int_0^t r_s ds \]

- Default intensity (intensity of Poisson jump to default):
 \[\lambda_t = c + \langle \gamma, X_t, \mathcal{I} \rangle, \quad (c, \gamma) \in \mathbb{R} \times \mathbb{R}_+^m, \quad \Lambda_t = \int_0^t \lambda_s ds \]

- Default:
 \[\tau = \inf\{t > 0 : N_{\Lambda_t} = 1\} \]
Affine Models with Default

Literature

- Reduced form affine models of credit default: Lando (1998)
Regular Affine Processes

Definition

A Markov process \((X_t)_{t \geq 0}\) is regular affine if there exist functions \(\phi(t, u)\) and \(\psi(t, u)\) such that the characteristic function is given by

\[
\mathbb{E}^x [\exp (\langle u, X_t \rangle)] = \exp (\phi(t, u) + \langle \psi(t, u), x \rangle), \quad u \in \mathbb{C}^m \times i\mathbb{R}^n
\]

and for all \(t \geq 0\), a.s. \(X_s \to X_t\) as \(s \to t\).

- A regular affine process can be described by its characteristic octet \((a, \alpha, b, \beta, c, \gamma, \nu, \mu)\).
- Functions \(\phi\) and \(\psi\) can be calculated as solutions of a system of generalized Riccati equations.
Infinitesimal generator: diffusion, drift, jumps

\[
\mathcal{G} f(x) = \sum_{k,l=1}^{N} (a_{kl} + \langle \alpha_{kl}^{\mathcal{I}}, x_{\mathcal{I}} \rangle) \frac{\partial^2 f(x)}{\partial x_k \partial x_l} + \\
+ \langle b + \beta x, \nabla f(x) \rangle - (c + \langle \gamma, x_{\mathcal{I}} \rangle) \\
+ \int_{D \backslash \{0\}} (f(x + \xi) - f(x) - \langle \nabla \mathcal{J} f(x), \chi_{\mathcal{J}}(\xi) \rangle) \nu(d\xi) \\
+ \sum_{i=1}^{m} \int_{D \backslash \{0\}} (f(x + \xi) - f(x) - \\
- \langle \nabla \mathcal{J} \cup \{i\} f(x), \chi_{\mathcal{J} \cup \{i\}} f(\xi) \rangle) x_i \mu_i(d\xi).
\]
Example: Heston model with stochastic interest rates and jump to default

\[
\begin{align*}
 dX_t^1 &= \kappa_1 (\theta_1 - X_t^1) \, dt + \eta_1 \sqrt{X_t^1} \, dW_t^1 \\
 dX_t^2 &= \kappa_2 (\theta_2 - X_t^2) \, dt + \eta_2 \sqrt{X_t^2} \, dW_t^2 \\
 dX_t^3 &= -\frac{1}{2}X_t^1 \, dt + \sqrt{X_t^1} \, dW_t^3
\end{align*}
\]

with correlation matrix of the Brownian motions

\[
\begin{pmatrix}
 1 & 0 & \rho \\
 0 & 1 & 0 \\
 \rho & 0 & 1
\end{pmatrix}
\]
s_t, r_t, λ_t

- Interest rates: $r_t = d + \delta_1 X^1_t + \delta_2 X^2_t$
- Default intensity: $\lambda_t = c + \gamma_1 X^1_t + \gamma_2 X^2_t$
- Pure log returns: $s_t = X^3_t$
We want to price European options on S_T with payoff function φ.

Cases of particular interest include:

- Government bonds $\varphi \equiv 1$,
- Corporate bonds $\varphi(S) = 1_{\{S>0\}}$,
- Call options $\varphi(S) = (S - K)^+$,
- Power payoffs $\varphi(S) = S^p 1_{\{S>0\}}$.

Generalized discounted moments

We define the \textit{generalized discounted moments}:

\[h_{t,x}(z) = \mathbb{E}^x \left[\exp \left(-R_t \right) S_t^z 1_{\{\tau > t\}} \right]. \]

for all \(z \in U_{t,x} \) with

\[U_{t,x} = \{ z \in \mathbb{C} : h_{t,x}(\text{Re}(z)) < \infty \}. \]

One can show that \(U_{t,x} \) is an open vertical strip, an open vertical half-space or all of \(\mathbb{C} \).
Expansion of state space

\[\hat{D} = \mathbb{R}_+^{m+2} \times \mathbb{R}^n \cup \{\Delta\} \]

\[Y_t = \begin{cases} (X_t, R_t, \Lambda_t) & \text{if } t < \tau \\ \Delta & \text{otherwise} \end{cases} \]

\((Y_t)_{t\geq 0}\) is an affine process

\(h_{t,x}(z)\) can be calculated for \(z \in i\mathbb{R}\) using Riccati equations for the characteristic function of \((Y_t)_{t\geq 0}\)
Affine Models with Default Pricing

Riccati equations

\[
\begin{align*}
\partial_t A(t, u, v, w) &= F(B(t, u, v, w), v, w) \\
\partial_t B_I(t, u, v, w) &= G(B(t, u, v, w), v, w) \\
B_J(t, u, v, w) &= \exp(\beta_J^T t) u_J \\
A(0, u, v, w) &= 0, \\
B_I(0, u, v, w) &= u_I,
\end{align*}
\]
Riccati equations (2)

\[
F(u, v, w) = \langle au, u \rangle + \langle b, u \rangle + dv + c(w - 1) \\
+ \int_{D\setminus\{0\}} \left(e^{\langle u, \xi \rangle} - 1 - \langle u_J, \chi_J(\xi) \rangle \right) \nu(d\xi)
\]

\[
G_i(u, v, w) = \langle \alpha_i u, u \rangle + \sum_{k=1}^{d} \beta_{ki}u_k + \delta_i v + \gamma_i(w - 1) \\
+ \int_{D\setminus\{0\}} \left(e^{\langle u, \xi \rangle} - 1 - \langle u_{J \cup \{i\}}, \chi_{J \cup \{i\}}(\xi) \rangle \right) \mu_i(d\xi) \quad \text{for } i \in \mathcal{I}.
\]
Affine Models with Default Pricing

Preparations for the main result

- \(V_t := \{ z \in \mathbb{C} : B_i(t, z \varepsilon, z - 1, z) \text{ is finite for all } i \in \mathcal{I} \} \).
- For all \(z \in V_t \):
 \[
 l_{t,x}(z) = \exp(ze + A(t, z \varepsilon, z - 1, z) + \langle B(t, z \varepsilon, z - 1, z), x \rangle)
 \]
- By extension of state space: \(h_{t,x}(iy) = l_{t,x}(iy) \) for all \(y \in \mathbb{R} \)
- \(I_t \): largest interval around 0 contained in \(V_t \cap \mathbb{R} \)
- \(V_t^0 \): connected component of \(V_t \) containing 0
Main result

Theorem

For all \((t, x) \in \mathbb{R}_+ \times D\), \(U_{t,x}\) is an open subset of \(\mathbb{C}\) containing \(\{z \in \mathbb{C} : \text{Re}(z) \in I_t\}\) and \(h_{t,x}(z) = l_{t,x}(z)\) for each \(z \in U_{t,x} \cap V_t^0\).

Idea of the proof:

1. Show that \(h_{t,x}\) is an analytic characteristic function (under a different measure)
2. Show that \(l_{t,x}\) is analytic on \(V_t^0\)
Applications of the main result

Main result yields:

- Pricing formulas for power payoffs, corporate and government bonds
- The following corollary:

Corollary

The condition

\[F(\varepsilon, 0, 1) = 0, \quad G(\varepsilon, 0, 1) = 0 \quad \text{and} \quad \beta \mathcal{J} \mathcal{J} = 0, \quad (1) \]

is sufficient for the discounted stock price \(\exp(s_t + \Lambda_t)1_{\{t<\tau\}} \) to be a martingale with respect to all \(\mathbb{P}^x, \, x \in D \). If all components of \(\varepsilon \mathcal{J} \) are different from 0, then (1) is also necessary.
Call option with log strike k:

$$c_{t,x}(k) = \mathbb{E}^x \left[e^{-R_t} (S_t - e^k)^+ \right].$$

Pricing formula: Let $p > 0$ such that $p + 1 \in U_{t,x}$. Then,

$$c_{t,x}(k) = \frac{e^{-pk}}{2\pi} \int_{\mathbb{R}} e^{-iyk} g_c(y) dy = \frac{e^{-pk}}{\pi} \int_0^\infty \text{Re} \left(e^{-iyk} g_c(y)\right) dy,$$

where

$$g_c(y) = \frac{h_{t,x}(p + 1 + iy)}{p^2 + p - y^2 + iy(2p + 1)}.$$
Pricing in Heston model with stochastic interest rates and jump to default

\[h_{t,x}(z) = \exp(A(t, (0, 0, z), z - 1, z) + \langle B(t, (0, 0, z), z - 1, z), x \rangle) \]
\[=: \exp \left(\tilde{A}(t, z) + \tilde{B}_1(t, z)x_1 + \tilde{B}_2(t, z)x_2 + zx_3 \right), \]

where

\[
\begin{cases}
\partial_t \tilde{A}(t, z) = \kappa_1 \theta_1 \tilde{B}_1(t, z) + \kappa_2 \theta_2 \tilde{B}_2(t, z) + (c + d)(z - 1) \\
\partial_t \tilde{B}_1(t, z) = \frac{1}{2} \eta_1^2 \tilde{B}_1^2(t, z) + (\rho \eta_1 z - \kappa_1) \tilde{B}_1(t, z) \\
+ (\frac{1}{2} z + \gamma_1 + \delta_1)(z - 1) \\
\partial_t \tilde{B}_2(t, z) = \frac{1}{2} \eta_2^2 \tilde{B}_2^2(t, z) - \kappa_2 \tilde{B}_2(t, z) + (\gamma_2 + \delta_2)(z - 1) \\
\tilde{A}(0, x) = \tilde{B}_1(0, z) = \tilde{B}_2(0, z) = 0.
\end{cases}
\]
Implied volatility surface: with and without default
Pricing of European options with arbitrary payoff φ

Integrability condition

$$L_{t,x} = \left\{ \varphi : \mathbb{R}_+ \to \mathbb{R} | \mathbb{E}_x^{\varphi} \exp(-R_t) | \varphi(S_t)| < \infty \right\}.$$

Procedure:

1. Let $\varphi \in L_{t,x}$.
2. Take a set \mathcal{K} of strikes of European calls.
3. Take a set \mathcal{P} of powers of power payoffs in $L_{t,x}$.
4. Use regression weighted by the heuristic density of S_T in order to find the best approximation. For better numerical performance use Gram-Schmidt in order to orthogonalize the power payoffs.
Application: truncated log payoff

- Payoff: $\varphi(S) = \log(S) \vee k$.
- Example: $S = 1, k = -1$.
- Approximating assets:
 1. call options with strikes $\mathcal{K} = \{0.02, 0.04, \ldots, 2\}$ ($\mathcal{P} = \emptyset$)
 2. power payoffs of powers $\mathcal{P} = \{0, 0.05, \ldots, 4.95\}$ ($\mathcal{K} = \emptyset$),
 where $p = 0$ is a government bond
 3. using $\mathcal{K} = \{0.02, 0.06, \ldots, 1.98\}$ and
 $\mathcal{P} = \{0, 0.1, \ldots, 4.9\}$, where $p = 0$ is a government bond
- Heuristic density for S_T:

 $\rho(S) = \begin{cases}
 \exp(-10S) & S < 0.5 \\
 \exp(-10|S - 1|) & 0.5 \leq S \leq 1.5 \\
 \exp(-5) & S > 1.5.
\end{cases}$
Comparison of different approximation methods

Approximation using power payoffs only

Approximation using calls only

Approximation using both

Alexander Wugalter Affine Models with Default Pricing
Outline

1. Model
2. Pricing
3. Hedging
Hedging of European Options

- Number of assets must match the number of sources of risk and the sources of risk must be “hedgeable”
- Jumps can only have discrete size:
 - \(\nu = \sum_{k=1}^{M} r_k \delta x_k \) for some \(r_j \in \mathbb{R} \setminus \{0\} \) and \(x_j \in D \setminus \{0\} \)
 - \(\mu_i = \sum_{j=1}^{M_i} r_{jk} \delta x_{jk} \) for all \(1 \leq i \leq m \) with \(r_{ik} \in \mathbb{R} \setminus \{0\} \) and \(x_{ik} \in D \setminus \{0\} \).
- \(L = N + M + \sum_{i=1}^{m} M_i + 1 \) instruments needed
- Portfolio of basic instruments (European options):
 \(\mathcal{B} = \{ \varphi_1, \ldots, \varphi_L \} \)
Hedging parameters

- Greeks: For $i = 1, \ldots, N$:
 \[G_{t,x}^i = \frac{\partial}{\partial x_i} \mathbb{E}^x [\exp(-R_t) \varphi(S_T)] \]

- Sensitivity to jumps (described by jump measure ν): For all $k \in \{1, \ldots, M\}$:
 \[H_{t,x}^k = \mathbb{E}^{x+x_k} [\exp(-R_t) \varphi(S_t)] - \mathbb{E}^x [\exp(-R_t) \varphi(S_t)] \]

- Sensitivity to jumps (described by jump measures μ_i): For all $i \in \mathcal{I}, k \in \{1, \ldots, M^i\}$:
 \[H_{t,x}^{ik} = \mathbb{E}^{x+x_{ik}} [\exp(-R_t) \varphi(S_t)] - \mathbb{E}^x [\exp(-R_t) \varphi(S_t)] \]

- Impact of jump to default:
 \[D_{t,x} = \mathbb{E}^x [\exp(-R_t) \varphi(0)] - \mathbb{E}^x [\exp(-R_t) \varphi(S_t)]. \]
Hedging ratios ξ:

$$
G_{t-s,x}^l = \sum_{l=1}^{L} \varphi^l(t - s, x) G_{t_l-s,x}^l,
$$

$$
H_{t-s,x}^{11} = \sum_{l=1}^{L} \varphi^l(t - s, x) H_{t_l,x}^{l,11},
$$

$$
G_{t-s,x}^N = \sum_{l=1}^{L} \varphi^l(t - s, x) G_{t_l-s,x}^d,
$$

$$
H_{t-s,x}^{1M_1} = \sum_{l=1}^{L} \varphi^l(t - s, x) H_{t_l,x}^{l,1M_1},
$$

$$
H_{t-s,x}^{N_1} = \sum_{l=1}^{L} \varphi^l(t - s, x) H_{t_l,x}^{1,1},
$$

$$
H_{t-s,x}^{N_1} = \sum_{l=1}^{L} \varphi^l(t - s, x) H_{t_l,x}^{1,1},
$$

$$
H_{t-s,x}^{N_1} = \sum_{l=1}^{L} \varphi^l(t - s, x) H_{t_l,x}^{1,1},
$$

$$
D_{t-s,x} = \sum_{l=1}^{L} \varphi^l(t - s, x) D_{t_l,x},
$$
Hedging of European options

- All European options can be hedged iff the system of linear equations defined on the previous chart has a unique solution for all $\varphi \in L_{t,x}$.

- In the Heston model with stochastic interest rates we can hedge all European options if we trade in the stock, a government bond, a corporate bond (same company) and a liquid vanilla option and the following technical condition is fulfilled for all $0 \leq s \leq t$:

$$e^{x_3}P^0_{s,x}P_{s,x} \{-\partial_{x_1} c_{s,x}(k)\tilde{B}^0_2(s,0) + \partial_{x_2} c_{s,x}(k)\tilde{B}^0_1(s,0)$$

$$+ [\tilde{B}^0_1(s,0)\tilde{B}_2(s,0) - \tilde{B}^0_2(s,0)\tilde{B}_1(s,0)] \times$$

$$[\partial_{x_3} c_{s,x}(k) - c_{s,x}(k)] \} \neq 0$$

$(\tilde{B}^0$ is \tilde{B} in the case with no default)$
Summary

- General affine model for equity derivatives that incorporates stochastic volatility, stochastic interest rates and jump to default
- Notion of discounted moments for cases when $\log S_T = -\infty$ with positive probability
- Pricing in semi-closed form for most common European equity derivatives; otherwise: approximation
- Under additional assumptions: hedging
Thank you!

THE END