Measuring Default Contagion and System Risk: insights from network models

Rama Cont, Amal Moussa and Andrea Minca

Discussion by Thorsten Schmidt

www.tu-chemnitz.de/mathematik/fima

Lausanne, October 2010
Main points of the paper

- How to measure *stability* of a financial system
- How to improve stability in an *efficient* way

- The authors work on a unique set of data (Brazil Banks, June 07 - Dec 08).
- Different measures are developed and show intuitive results on this dataset.
On the methodological side, the goal is to represent the financial system as a network.

- n nodes; the exposure of node i to node j is E_{ij}.
- Node i has capital c_i and liquidity l_i.
- If $c_i = 0$ then the node i defaults.
- Contagion: If i defaults, then node j also defaults if
 \[c_j < (1 - R_i)E_{ji}. \]

Introduce stochastic market shocks:

- Consider $\epsilon_i, \ldots, \epsilon_n$ which reduce capital to $(c_i + \epsilon_i)_+$.
- If i defaults, then node j defaults if
 \[(c_j + \epsilon_j)_+ < (1 - R_i)E_{ji} \]
 or derivative payouts are larger than the liquidity
 \[l_i + \sum_j \pi_{ij}(c + \epsilon, E) < 0. \]
This induces a default cascade: $D_0(A) \subset D_1(A) \subset \cdots \subset D_{n-1}(A)$.

- **Static**: Set $\epsilon = 0$. Leads to the default impact $DI(i, c + \epsilon)$ (loss by $D_{n-1}({i})$).
- **Stochastic**: Choose model for ϵ and define the contagion index

$$\mathbb{E}(DI(i, c + \epsilon)|c_i + \epsilon_i \leq 0).$$

For assessing systemic risk the authors only consider a subset $C \subset \{1, \ldots, n\}$ of all banks. Then they define analogously

- **Static** Set $\epsilon = 0$ and define systemic risk index I_C as default index only of those nodes in C.
- **Stochastic** Choose model for ϵ and define the systemic risk index

$$\mathbb{E}(I_C(i, c + \epsilon)|c_i + \epsilon_i \leq 0).$$
Main assumption

- Gaussian one-factor model, Z_0, Z_1, \ldots iid $N(0, 1)$ and
 \[\epsilon_i = \sqrt{\rho}Z_0 + \sqrt{1-\rho}Z_i \]
- Heavy tailed factor model Z_0, Z_1, \ldots iid α-stable and
 \[\epsilon_i = \rho^\alpha Z_0 + (1 - \rho)^\alpha Z_i \]
- c_i are chosen such that the default probability is met.

Questions

- What are the requirements for a good distribution of ϵ_i?
- What is the model risk?
- Should one incorporate feedback effects?
Target immunization

Susceptibility ratio:

$$\chi_i = \max_{j \neq i} \frac{E_{ij}}{c_i}$$

(maximal fraction of wiped out capital on default of node i)

- Capital requirement: Impose a cap on χ for the most systemic nodes.

- Are the results stable amongst distributions of ϵ?
- Time between defaults is not taken into account.
- Relatively short interval of data (stability of the results/outcome)?
- The measures are estimates! Can you give confidence bounds?