Dynamic counterparty risk valuation

Mark Davis Martijn Pistorius
Imperial College London

Discussion by Julien Hugonnier
SFI at EPFL
Thank you Damir...
Thank you Damir…

and Congratulations on the happy event!
Counterparty risk

- Counterparty risk is the **risk that your counterparty defaults on its obligations to you.**
Counterparty risk

• Counterparty risk is the **risk that your counterparty defaults on its obligations to you.**
 • Exposure is value-dependent: I loose nothing if UBS defaults on a swap whose value to UBS is positive.
Counterparty risk

• Counterparty risk is the **risk that your counterparty defaults on its obligations to you.**

 • Exposure is value-dependent: I loose nothing if UBS defaults on a swap whose value to UBS is positive.

 • Some of *the factors that influence your counterpart’s default might also influence the pay-off of the contract or the value of the underlying at the time of default.*
Counterparty risk

- Counterparty risk is the **risk that your counterparty defaults on its obligations to you.**
 - Exposure is value-dependent: I loose nothing if UBS defaults on a swap whose value to UBS is positive.
 - Some of the factors that influence your counterpart’s default might also influence the pay-off of the contract or the value of the underlying at the time of default.
- To evaluate exposure (CVA) one needs both the distribution of the default time and the distribution of all state variables conditional on the occurrence of default.
Wrong-way risk

• Assume you hold a long position in a payer swap and consider a one factor term structure model.
Wrong–way risk

- Assume you hold a long position in a payer swap and consider a one factor term structure model.
- Absent counterparty risk the value of this swap is a function of time and the risk–free short rate.
Wrong–way risk

- Assume you hold a long position in a payer swap and consider a one factor term structure model.
- Absent counterparty risk the value of this swap is a function of time and the risk–free short rate.
- **Wrong–way risk**: If the short rate and the default arrival are positively correlated then as rates increase,
Wrong–way risk

• Assume you hold a long position in a payer swap and consider a one factor term structure model.

• Absent counterparty risk the value of this swap is a function of time and the risk–free short rate.

• **Wrong–way risk**: If the short rate and the default arrival are positively correlated then as rates increase
 - The default probability increases,
Wrong–way risk

- Assume you hold a long position in a payer swap and consider a one factor term structure model.
- Absent counterparty risk the value of this swap is a function of time and the risk–free short rate.
- **Wrong–way risk**: If the short rate and the default arrival are positively correlated then as rates increase
 - The default probability increases,
 - The value of the swap, and hence your exposure, also increases!
Wrong–way risk

- Assume you hold a long position in a payer swap and consider a one factor term structure model.
- Absent counterparty risk the value of this swap is a function of time and the risk–free short rate.
- **Wrong–way risk**: If the short rate and the default arrival are positively correlated then as rates increase
 - The default probability increases,
 - The value of the swap, and hence your exposure, also increases!
- Another example: CDS on a name whose credit quality is positively correlated to that of the protection seller.
This paper

- The basic valuation setting:
This paper

- **The basic valuation setting:**
 - Let $\nu \in \mathbb{R}$ and $\sigma(t)$ be a deterministic function. Default is triggered the first time that the credit index

 $$Y_t = Y_0 + \int_0^t \nu \sigma(s)^2 ds + \int_0^t \sigma(s) dB_s$$

 crosses some deterministic barrier $b(t)$.

The basic valuation setting:

- Let $\nu \in \mathbb{R}$ and $\sigma(t)$ be a deterministic function. Default is triggered the first time that the credit index

$$Y_t = Y_0 + \int_0^t \nu \sigma(s)^2 ds + \int_0^t \sigma(s) dB_s$$

crosses some deterministic barrier $b(t)$.

- Absent counterparty risk, the pay-off and/or value is driven by another process $(X_t)_{t \geq 0}$ that is correlated with $(Y_t)_{t \geq 0}$.
This paper

• **The basic valuation setting:**
 - Let $\nu \in \mathbb{R}$ and $\sigma(t)$ be a deterministic function. Default is triggered the first time that the credit index
 \[Y_t = Y_0 + \int_0^t \nu \sigma(s)^2 \, ds + \int_0^t \sigma(s) \, dB_s \]
 crosses some deterministic barrier $b(t)$.
 - Absent counterparty risk, the pay-off and/or value is driven by another process $(X_t)_{t \geq 0}$ that is correlated with $(Y_t)_{t \geq 0}$.

• **Goal(s):** calibrate the barrier and/or dynamics to observed spreads and compute the distribution of $(X_t)_{t \geq 0}$ conditional on default occurring at some given point during the life of the contract.
1. Calibration to CDS data

- Under appropriate assumptions, market spreads provide the risk-neutral distribution H of the default time (HW 2001).
1. Calibration to CDS data

- Under appropriate assumptions, market spreads provide the risk-neutral distribution H of the default time (HW 2001).
- **IFPT (Shiryaev (1976))**: find a function b such that the first time that Y_t equals $b(t)$ is distributed according to H.

\[\sigma(t)^2 \propto H'(t) \left(1 - H(t) \right) \]

so that the implied credit index becomes more volatile as the hazard rate of the default distribution increases.
1. Calibration to CDS data

- Under appropriate assumptions, market spreads provide the risk-neutral distribution H of the default time (HW 2001).

- **IFPT (Shiryaev (1976))**: find a function b such that the first time that Y_t equals $b(t)$ is distributed according to H.

- **This paper**: choose ν, $\sigma(t)$ and the distribution of Y_0 so that the hitting time of zero is distributed according to H.

1. Calibration to CDS data

- Under appropriate assumptions, market spreads provide the risk-neutral distribution H of the default time (HW 2001).

- **IFPT (Shiryaev (1976))**: find a function b such that the first time that Y_t equals $b(t)$ is distributed according to H.

- **This paper**: choose ν, $\sigma(t)$ and the distribution of Y_0 so that the hitting time of zero is distributed according to H.

- The authors derive a **very neat solution**.
1. Calibration to CDS data

- Under appropriate assumptions, market spreads provide the risk-neutral distribution H of the default time (HW 2001).
- **IFPT** (Shiryaev (1976)): find a function b such that the first time that Y_t equals $b(t)$ is distributed according to H.
- **This paper**: choose ν, $\sigma(t)$ and the distribution of Y_0 so that the hitting time of zero is distributed according to H.
- The authors derive a very neat solution.
1. Calibration to CDS data

- Under appropriate assumptions, market spreads provide the risk-neutral distribution H of the default time (HW 2001).

- **IFPT** (Shiryaev (1976)): find a function b such that the first time that Y_t equals $b(t)$ is distributed according to H.

- **This paper**: choose ν, $\sigma(t)$ and the distribution of Y_0 so that the hitting time of zero is distributed according to H.

- The authors derive a **very neat solution**. In particular:

$$\sigma(t)^2 \propto \frac{H'(t)}{1 - H(t)}$$

so that the implied credit index becomes more volatile as the hazard rate of the default distribution increases.
2. Conditional distributions

- The theory of $h-$transforms states that

$$
\mathbb{P}[A|\tau = s] = \mathbb{E}\left[1(A) \frac{h_s(t, Y_t)}{h_s(0, Y_0)}\right] \equiv \hat{\mathbb{P}}_s[A]
$$

for all $t < s$ and $A \in \mathcal{F}_t$ where

$$
h_s(t, Y_t) \equiv 1_{\{\tau > t\}} \frac{1}{\text{d}s} \mathbb{P}[\tau \in \text{d}s|Y_t]
$$

is a martingale that gives the ‘probability’ of default at time s given that the credit index started from Y_t at time t.
2. Conditional distributions

- The theory of $h-$transforms states that

$$
P[A|\tau = s] = \mathbb{E} \left[1_A \frac{h_s(t, Y_t)}{h_s(0, Y_0)} \right] \equiv \hat{P}_s[A]
$$

for all $t < s$ and $A \in \mathcal{F}_t$ where

$$
h_s(t, Y_t) \equiv 1_{\{\tau > t\}} \frac{1}{ds} \mathbb{P}[\tau \in ds|Y_t]
$$

is a martingale that gives the ‘probability’ of default at time s given that the credit index started from Y_t at time t.

- Together with Girsanov’s theorem this **allows to compute/simulate dynamics conditional on** $\{\tau = s\}$
2. Conditional distributions (cont’d)

- In particular, the dynamics of the credit index conditional on default occurring at time s are given by

$$dY_t = \left(\frac{1}{Y_t} - \frac{Y_t}{v(t,s)} \right) \sigma(t)^2 dt + \sigma(t)d\hat{B}_{s,t}$$

where \hat{B}_s is a Brownian motion under \hat{P}_s and the function $v(t,s)$ is the integrated square volatility.
2. Conditional distributions (cont’d)

- In particular, the dynamics of the credit index conditional on default occurring at time s are given by

$$dY_t = \left(\frac{1}{Y_t} - \frac{Y_t}{v(t, s)} \right) \sigma(t)^2 dt + \sigma(t)d\hat{B}_{s,t}$$

where \hat{B}_s is a Brownian motion under \hat{P}_s and the function $v(t, s)$ is the integrated square volatility.

- If $\sigma \equiv 1$ then the conditioned credit index is a 3d–Bessel bridge from the point $(0, Y_0)$ to the point $(s, 0)$.

2. Conditional distributions (cont’d)

- In particular, the dynamics of the credit index conditional on default occurring at time s are given by

$$dY_t = \left(\frac{1}{Y_t} - \frac{Y_t}{v(t, s)} \right) \sigma(t)^2 dt + \sigma(t) d\hat{B}_{s,t}$$

where \hat{B}_{s} is a Brownian motion under \hat{P}_{s} and the function $v(t, s)$ is the integrated square volatility.

- If $\sigma \equiv 1$ then the conditioned credit index is a 3d–Bessel bridge from the point $(0, Y_0)$ to the point $(s, 0)$.

- There are close connections to the theory of conditioned SDEs and to initial enlargements of filtrations.
1. Do CDS spreads represent only default probabilities or do they also incorporate other things like liquidity, contagion...
Questions/Comments

1. Do CDS spreads represent only default probabilities or do they also incorporate other things like liquidity, contagion...

2. How sensitive is the default distribution to assumptions on recovery risk in the CDS?
Questions/Comments

1. Do CDS spreads represent only default probabilities or do they also incorporate other things like liquidity, contagion...

2. How sensitive is the default distribution to assumptions on recovery risk in the CDS?

3. The calibration of H requires that default and discount factors are independent. Can this be overcome?
Questions/Comments

1. Do CDS spreads represent only default probabilities or do they also incorporate other things like liquidity, contagion...

2. How sensitive is the default distribution to assumptions on recovery risk in the CDS?

3. The calibration of H requires that default and discount factors are independent. Can this be overcome?

4. Can the modified IFPT be solved in a multidimensional setting to match the joint distribution of default times?
Questions/Comments

1. Do CDS spreads represent only default probabilities or do they also incorporate other things like liquidity, contagion...

2. How sensitive is the default distribution to assumptions on recovery risk in the CDS?

3. The calibration of H requires that default and discount factors are independent. Can this be overcome?

4. Can the modified IFPT be solved in a multidimensional setting to match the joint distribution of default times?

5. Can a similar approach be used in reduced–form models?