Fully Flexible Views: Theory and Practice

Attilio Meucci

discussion by T. Berrada

Swissquote Conference - October 2011
Summary

- Non-linear views in non-linear markets
Summary

- Non-linear views in non-linear markets
- Stress testing, scenario analysis, ranking allocation
Non-linear views in non-linear markets
Stress testing, scenario analysis, ranking allocation
Summary

- Non-linear views in non-linear markets
- Stress testing, scenario analysis, ranking allocation

Important Contributions

- No restrictions on distributions and opinions
Summary

- Non-linear views in non-linear markets
- Stress testing, scenario analysis, ranking allocation

Important Contributions

- No restrictions on distributions and *opinions*
- No repricing in the numerical approach
Summary

- Non-linear views in non-linear markets
- Stress testing, scenario analysis, ranking allocation

Important Contributions

- No restrictions on distributions and *opinions*
- No repricing in the numerical approach
- High dimensional problems
Relative entropy

- Relative entropy: distance between f and \tilde{f}
Relative entropy

- Relative entropy: *distance* between f and \tilde{f}
- Also known as *Kullback-Leibler distance*: KL
Relative entropy

- Relative entropy: *distance* between \(f \) and \(\tilde{f} \)

- Also known as **Kullback-Leibler distance**: KL

- KL belongs to the Ali-Silvey class of information theoretic distance measures

\[
d(p_0, p_1) = f \left(E^{p_0} [c(\Lambda(X))] \right)
\]

where \(c \) is convex, \(\Lambda(\cdot) \) is the likelihood ratio and \(f(\cdot) \) is non decreasing
Relative entropy

- Relative entropy: \textit{distance} between \(f \) and \(\tilde{f} \)
- Also known as \textbf{Kullback-Leibler distance}: KL
- KL belongs to the Ali-Silvey class of information theoretic distance measures

\[
d(p_0, p_1) = f \left(E^{p_0} [c(\Lambda(X))] \right)
\]

where \(c \) is convex, \(\Lambda(\cdot) \) is the likelihood ratio and \(f(\cdot) \) is non decreasing

- \(f(x) = x, \ c(x) = x \log x \quad \Rightarrow \quad \text{KL} \)
The KL distance is not symmetric

\[KL(p_0, p_1) \neq KL(p_1, p_0) \]
The KL distance is not symmetric

\[KL(p_0, p_1) \neq KL(p_1, p_0) \]

Appropriate for learning/estimation problems
The KL distance is not symmetric

\[KL(p_0, p_1) \neq KL(p_1, p_0) \]

Appropriate for learning/estimation problems

Appropriate for opinion pooling?
Consistency Requirement

It would be reasonable to observe

\[f(x) \xrightarrow{G} \tilde{f}(x) \]
\[\tilde{f}(x) \xrightarrow{G^{-1}} f(x) \]

\(G \) is a view on the distribution: increase the variance by 1 %

\(G^{-1} \) is a view on the distribution: decrease the variance by 1 %
A simple example: non linear transformation

- Start with an initial distribution P_0 of the random variable X
A simple example: non linear transformation

- Start with an initial distribution P_0 of the random variable X
- \mathcal{V} is the set of distribution such that

$$
E^{P \in \mathcal{V}} \left[(X - E^{P \in \mathcal{V}}(X))^2 \right] = E^{P_0} \left[(X - E^{P_0}(X))^2 \right] + 1\%
$$
A simple example: non linear transformation

- Start with an initial distribution P_0 of the random variable X
- \mathcal{V} is the set of distribution such that
 \[
 \mathbb{E}_{P \in \mathcal{V}} \left[(X - \mathbb{E}_{P \in \mathcal{V}}(X))^2 \right] = \mathbb{E}_{P_0} \left[(X - \mathbb{E}_{P_0}(X))^2 \right] + 1\%
 \]
- Choose P_1 such that
 \[
 P_1 \equiv \arg \min_{P \in \mathcal{V}} [KL(P, P_0)]
 \]
A simple example: non linear transformation

- Start with an initial distribution P_0 of the random variable X
- V is the set of distribution such that
 $$E_{P \in V} \left[(X - E_{P \in V}(X))^2 \right] = E_{P_0} \left[(X - E_{P_0}(X))^2 \right] + 1\%$$
- Choose P_1 such that
 $$P_1 \equiv \arg \min_{P \in V} [KL(P, P_0)]$$
- Starting from P_1
A simple example: non linear transformation

- Start with an initial distribution P_0 of the random variable X
- \mathcal{V} is the set of distribution such that

$$E_{P \in \mathcal{V}}[(X - E_{P \in \mathcal{V}}(X))^2] = E_{P_0}[(X - E_{P_0}(X))^2] + 1\%$$

- Choose P_1 such that

$$P_1 \equiv \arg \min_{P \in \mathcal{V}} [KL(P, P_0)]$$

- Starting from P_1
- \mathcal{W} is the set of distribution such that

$$E_{P \in \mathcal{W}}[(X - E_{P \in \mathcal{W}}(X))^2] = E_{P_1}[(X - E_{P_1}(X))^2] - 1\%$$
A simple example: non linear transformation

- Start with an initial distribution P_0 of the random variable X
- \mathcal{V} is the set of distribution such that

$$E_{P \in \mathcal{V}} [(X - E_{P \in \mathcal{V}}(X))^2] = E_{P_0} [(X - E_{P_0}(X))^2] + 1\%$$

- Choose P_1 such that

$$P_1 \equiv \arg \min_{P \in \mathcal{V}} [KL(P, P_0)]$$

- Starting from P_1
- \mathcal{W} is the set of distribution such that

$$E_{P \in \mathcal{W}} [(X - E_{P \in \mathcal{W}}(X))^2] = E_{P_1} [(X - E_{P_1}(X))^2] - 1\%$$

- Choose P_2 such that

$$P_2 \equiv \arg \min_{P \in \mathcal{W}} [KL(P, P_1)]$$
A simple example: non-linear transformation

Initial distribution P_0

Intermediary distribution P_1

Final distribution P_2
A simple(r) example: linear transformation

Initial distribution P_0

Intermediary distribution P_1

Final distribution P_2
Alternative distance measure

- Use a *symmetrized* version of KL?

An example from Johnson and Sinanovic (2000):

\[
R(p_0, p_1) \equiv \frac{1}{2} \text{KL}(p_0, p_1) + \frac{1}{2} \text{KL}(p_1, p_0)
\]

Problem: not an Ali-Silvey distance, it may not be appropriate for parameter estimation problems

Arithmetic average (similar to the \(J\)-divergence)

\[
A(p_0, p_1) \equiv \text{KL}(p_0, p_1) + \text{KL}(p_1, p_0)
\]

Seghouane and Amari (2007): the Akaike information criterion is an asymptotically unbiased estimator of

T.Berrada
Fully Flexible Views: Theory and Practice
9 / 9
Alternative distance measure

- Use a \textit{symmetrized} version of KL?

- An example from Johnson and Sinanovic (2000):

 Resistor-average distance \mathcal{R}
 \[
 \mathcal{R}(p_0, p_1) \equiv \frac{1}{KL(p_0, p_1)} + \frac{1}{KL(p_1, p_0)}
 \]
Alternative distance measure

- Use a *symmetrized* version of KL?

- An example from Johnson and Sinanovic (2000):

 Resistor-average distance \mathcal{R}

 $$
 \frac{1}{\mathcal{R}(p_0, p_1)} \equiv \frac{1}{KL(p_0, p_1)} + \frac{1}{KL(p_1, p_0)}
 $$

- Problem: not an Ali-Silvey distance, it may not be appropriate for parameter estimation problems
Alternative distance measure

- Use a *symmetrized* version of KL?
- An example from Johnson and Sinanovic (2000):
 Resistor-average distance \(\mathcal{R} \)
 \[
 \mathcal{R}(p_0, p_1) \equiv \frac{1}{KL(p_0, p_1)} + \frac{1}{KL(p_1, p_0)}
 \]
 - Problem: not an Ali-Silvey distance, it may not be appropriate for parameter estimation problems
- Arithmetic average (similar to the \(J \)-divergence)
 \[
 \mathcal{A}(p_0, p_1) \equiv \frac{KL(p_0, p_1) + KL(p_1, p_0)}{2}
 \]
Alternative distance measure

- Use a *symmetrized* version of KL?

- An example from Johnson and Sinanovic (2000):
 Resistor-average distance \mathcal{R}

 \[
 \frac{1}{\mathcal{R}(p_0, p_1)} \equiv \frac{1}{KL(p_0, p_1)} + \frac{1}{KL(p_1, p_0)}
 \]

- Problem: not an Ali-Silvey distance, it may not be appropriate for parameter estimation problems

- Arithmetic average (similar to the J-divergence)

 \[
 \mathcal{A}(p_0, p_1) \equiv \frac{KL(p_0, p_1) + KL(p_1, p_0)}{2}
 \]

- Seghouane and Amari (2007): the Akaike information criterion is an asymptotically unbiased estimator of \mathcal{A}
Alternative distance measure

- Use a *symmetrized* version of KL?
- An example from Johnson and Sinanovic (2000):

 Resistor-average distance R

 $\frac{1}{R(p_0, p_1)} \equiv \frac{1}{KL(p_0, p_1)} + \frac{1}{KL(p_1, p_0)}$

 - Problem: not an Ali-Silvey distance, it may not be appropriate for parameter estimation problems

- Arithmetic average (similar to the J-divergence)

 $A(p_0, p_1) \equiv \frac{KL(p_0, p_1) + KL(p_1, p_0)}{2}$

- Seghouane and Amari (2007): the Akaike information criterion is an asymptotically unbiased estimator of A
Alternative distance measure

- Use a *symmetrized* version of KL?

- An example from Johnson and Sinanovic (2000):

 Resistor-average distance \(\mathcal{R} \)

 \[
 \mathcal{R}(p_0, p_1) = \frac{1}{KL(p_0, p_1)} + \frac{1}{KL(p_1, p_0)}
 \]

- Problem: not an Ali-Silvey distance, it may not be appropriate for parameter estimation problems

- Arithmetic average (similar to the \(J \)-divergence)

 \[
 \mathcal{A}(p_0, p_1) = \frac{KL(p_0, p_1) + KL(p_1, p_0)}{2}
 \]

- Seghouane and Amari (2007): the Akaike information criterion is an asymptotically unbiased estimator of \(\mathcal{A} \)