Discussion on:

On the Theory of Continuous-Time Recursive Utility

Hansjörg Albrecher

Department of Actuarial Science,
Faculty of Business and Economics,
University of Lausanne, Switzerland

hansjoerg.albrecher@unil.ch

Swissquote Conference on Asset Management 2011, Lausanne

October 20-21, 2011
Studying the connection between

- **Recursive utility:** \[V(c_0, c_1, ..) = W(c_0, \mu[V(c_1, c_2, \ldots)]] \]

Epstein-Zin (1989)
Studying the connection between

- **Recursive utility:** \(V(c_0, c_1, ..) = W(c_0, \mu[V(c_1, c_2, \ldots)]) \)

 Epstein-Zin (1989)

 cont.time: stochastic differential utility

 preferences formalized via a differential equation

 Duffie-Epstein (1992)

 Kraft-Seifried (2010)
Studying the connection between

- **Recursive utility:** \[V(c_0, c_1, \ldots) = W(c_0, \mu[V(c_1, c_2, \ldots)]) \]
 - Epstein-Zin (1989)
 - cont. time: stochastic differential utility
 - preferences formalized via a differential equation
 - Duffie-Epstein (1992)
 - Kraft-Seifried (2010)

- **Time-global problem formulation**

 Issue of **Time-Consistency**

 \[\rightarrow \text{optimize not among admissible, but only among consistent strategies!} \]
 - (e.g. mean-variance problem without precommitment)
 - Basak-Chabakauri (2010), Björk-Murgoci (2010)
Studying the connection between

- **Recursive utility:** \(V(c_0, c_1, ..) = W(c_0, \mu[V(c_1, c_2, \ldots)]) \)

 Epstein-Zin (1989)

 cont.time: stochastic differential utility

 preferences formalized via a differential equation

 Duffie-Epstein (1992)

 Kraft-Seifried (2010)

- **Time-global problem formulation**

 Issue of Time-Consistency

 → optimize not among admissible, but only among consistent strategies!

 (e.g. mean-variance problem without precommitment)

 Basak-Chabakauri (2010), Björk-Murgoci (2010)

Result: The resulting optimal strategies *sometimes* coincide

(Example: Black-Scholes market)
Model Assumptions

\[dB(t) = B(t) r \, dt \]

\[dS(t) = S(t) \left[(r + \lambda(t, Y(t))) \, dt + \sigma(t, Y(t)) \, dW(t) \right] \]

\[dY(t) = \alpha(t, Y(t)) \, dt + \beta(t, Y(t)) \left(\rho \, dW(t) + \sqrt{1 - \rho^2} \, d\tilde{W}(t) \right) \]

Wealth process \(X(t) \): invest \(\pi X \) in \(S \) and \((1 - \pi)X \) in \(B \), consume at some rate \(c \)
Model Assumptions

\[dB(t) = B(t) r \, dt \]
\[dS(t) = S(t) \left[(r + \lambda(t, Y(t))) \, dt + \sigma(t, Y(t)) \, dW(t) \right] \]
\[dY(t) = \alpha(t, Y(t)) \, dt + \beta(t, Y(t)) \left(\rho \, dW(t) + \sqrt{1 - \rho^2} \, d\bar{W}(t) \right) \]

Wealth process \(X(t) \): invest \(\pi X \) in \(S \) and \((1 - \pi)X \) in \(B \),
consume at some rate \(c \)

Classical problem: value function

\[V(t, x, y) = \sup_{c, \pi} E_{t,x,y} \left[\int_t^T e^{-\delta(s-t)} \frac{1}{1 - \gamma} c^{1-\gamma(s)} \, ds \right] \]

Linearity: local \(\rightarrow \) global
Model Assumptions

\[dB(t) = B(t) \, r \, dt \]
\[dS(t) = S(t) \left[(r + \lambda(t, Y(t))) \, dt + \sigma(t, Y(t)) \, dW(t) \right] \]
\[dY(t) = \alpha(t, Y(t)) \, dt + \beta(t, Y(t)) \left(\rho \, dW(t) + \sqrt{1 - \rho^2} \, d\overline{W}(t) \right) \]

Wealth process \(X(t) \): invest \(\pi X \) in \(S \) and \((1 - \pi)X \) in \(B \), consume at some rate \(c \)

New problem: value function \(\theta \). elasticity of intertemporal substitution

\[V(t, x, y) = \sup_{c, \pi} \left[\int_t^n \delta e^{-\delta(s-t)} \left(E_{t,x,y} \left[\frac{1}{1-\gamma} \, c^{1-\gamma(s)} \right] \right)^{1/\theta} \, ds \right]^\theta \]
Model Assumptions

\[dB(t) = B(t) \, r \, dt \]
\[dS(t) = S(t) \left[(r + \lambda(t, Y(t))) \, dt + \sigma(t, Y(t)) \, dW(t) \right] \]
\[dY(t) = \alpha(t, Y(t)) \, dt + \beta(t, Y(t)) \left(\rho \, dW(t) + \sqrt{1 - \rho^2} \, d\overline{W}(t) \right) \]

Wealth process \(X(t) \): invest \(\pi X \) in \(S \) and \((1 - \pi)X \) in \(B \),
consume at some rate \(c \)

New problem: value function

\[V(t, x, y) = \sup_{c, \pi} \left[\int_t^\infty \delta e^{-\delta(s-t)} \left(E_{t,x,y} \left[\frac{1}{1-\gamma} \, c^{1-\gamma(s)} \right] \right)^{1/\theta} ds \right]^\theta \]

certainty equivalent on \(c \)

Non-Linear: look only for optimal control among consistent ones
Model Assumptions

\[dB(t) = B(t) \, r \, dt \]
\[dS(t) = S(t) \left[(r + \lambda(t, Y(t))) \, dt + \sigma(t, Y(t)) \, dW(t) \right] \]
\[dY(t) = \alpha(t, Y(t)) \, dt + \beta(t, Y(t)) \left(\rho \, dW(t) + \sqrt{1 - \rho^2} \, d\overline{W}(t) \right) \]

Wealth process \(X(t) \): invest \(\pi X \) in \(S \) and \((1 - \pi)X \) in \(B \),
consume at some rate \(c \)

New problem: value function

\[V(t, x, y) = \sup_{c, \pi} \left[\int_{t}^{\infty} \delta e^{-\delta(s-t)} \left(E_{t,x,y} \left[\frac{1}{1-\gamma} c^{1-\gamma(s)} \right] \right)^{1/\theta} ds \right]^{\theta} \]

More flexibility, conceptually: analytical advantages over recursive utility

Bellman-type equation with \textit{additional terms}, which cancel if

- \(\theta = 1 \): time-additive utility
- Separation condition and \(\beta = 0 \)
Questions

- Technical conditions on $\lambda, \sigma, \alpha, \beta$? Existence of solutions?
Questions

- Technical conditions on $\lambda, \sigma, \alpha, \beta$? Existence of solutions?
- How strong is the separation condition?
Questions

- Technical conditions on $\lambda, \sigma, \alpha, \beta$? Existence of solutions?
- How strong is the separation condition?
- Jumps?
Questions

- Technical conditions on $\lambda, \sigma, \alpha, \beta$? Existence of solutions?
- How strong is the separation condition?
- Jumps?
- Feasibility of numerical implementation of equations?
Questions

- Technical conditions on $\lambda, \sigma, \alpha, \beta$? Existence of solutions?
- How strong is the separation condition?
- Jumps?
- Feasibility of numerical implementation of equations?
- Restriction to time-consistent strategies? Is this an issue? (Markov assumptions) What is the 'price' of such a restriction?
Questions

- Technical conditions on $\lambda, \sigma, \alpha, \beta$? Existence of solutions?
- How strong is the separation condition?
- Jumps?
- Feasibility of numerical implementation of equations?
- Restriction to time-consistent strategies? Is this an issue? (Markov assumptions)
 What is the 'price' of such a restriction?
- Could one replace power utility by a distance to prespecified consumption stream?
Final Remarks

Related problem in insurance:

Maximize (utility of) expected discounted dividend payments until ruin

\[
\max_c E \left(\int_0^\tau e^{-\delta s} U(c_s) \, ds \right), \quad \max_C E \left[U \left(\int_0^\tau e^{-\delta s} dC_s \right) \right]
\]

Final Remarks

▷ Related problem in insurance:

Maximize (utility of) expected discounted dividend payments until ruin

\[
\max_c E \left(\int_0^\tau e^{-\delta s} U(c_s) \, ds \right), \quad \max_C E \left[U \left(\int_0^\tau e^{-\delta s} dC_s \right) \right]
\]

▷ Does a utility of a rate in continuous time make sense?
Final Remarks

- **Related problem in insurance:**

 Maximize (utility of) expected discounted dividend payments until ruin

 $$\max_c E \left(\int_0^\tau e^{-\delta s} U(c_s) \, ds \right), \quad \max_C E \left[U \left(\int_0^\tau e^{-\delta s} dC_s \right) \right]$$

- Does a utility of a rate in continuous time make sense?
- How to specify utility functions?
 Can the same utility function be used for all time horizons?

Time Consistency of Valuations (rather than Actions)

Final Remarks

- Related problem in insurance:
 Maximize (utility of) expected discounted dividend payments until ruin

\[
\max_c E \left(\int_0^\tau e^{-\delta s} U(c_s) \, ds \right), \quad \max_C E \left[U \left(\int_0^\tau e^{-\delta s} dC_s \right) \right]
\]

- Does a utility of a rate in continuous time make sense?
- How to specify utility functions?
 Can the same utility function be used for all time horizons?

Time Consistency of Valuations (rather than Actions)

- Risk measures:

 Coherence vs. Time Consistency