Swissquote Conference 2012 on Liquidity and Systemic Risk

Discussion of
“A Theoretical and Empirical Comparison of Systemic Risk Measures”

By S. Benoit, G. Colletaz, C. Hurlin, C. Perignon

Antonio Mele
Swiss Finance Institute & University of Lugano

November 9, 2012
Overview

- Systemic risk—Let me try to define it:
 - *The impact that the failure of a bank can have on the global financial system and wider economy rather than the risk that a failure can occur*

- Thought-provoking paper

- Existing systemic risk measures might disagree
 - Identifying Systemically Important Financial Institutions (SIFI) based on these measures might be problematic
 - Empirically, the instances where these measures lead to comparable rankings are too few

- Sometimes, they trivially relate to firms’ exposure to market risk
Contributions

• This paper’s contributions

 – Theoretical part—relies on a one-factor model
 * Main conclusion: ranking through betas the same as ranking by some systemic measures—with some nuances
 – Empirical part
 * Applying existing systemic risk measures to data leads to diverse results
Comments

- I would expect more from an innovative paper on systemic risk measures
 - Lacks originality
 - Didn't see any new risk-measure, only a study of existing ones
 - Analytical details are mechanical
 - Empirical findings might not be so surprising either
 - Do the measures studied in this paper really capture systemic risk in the first place
 - I am left with no guidance on further directions

- I'm not saying the paper isn't useful, however, nothing in it strikes me as truly innovative
Model’s review, queries, suggestions
Model

• “Linear market model,”

\[
\begin{align*}
 r_{it} &= \sigma_{it} \left(\rho_{it} \epsilon_{mt} + \sqrt{1 - \rho_{it}^2} \xi_{it} \right) \\
 r_{mt} &= \sigma_{mt} \epsilon_{mt}
\end{align*}
\]

where \(\epsilon_{mt} \) and \(\xi_{it} \) are i.i.d. with zero mean and unit variance

• Btw, shouldn’t we also have that

\[
r_{mt} = \int w_{it} r_{it} di,
\]

for some weighting \(w_{it} \)?
After all, the interpretation of some of the measures you study (MES, see below) relies on the sensitivity of the market index wrt to the weight of any firm \(i_0 \) (say). Define:

\[
ES_{mt}(C) \equiv E(r_{mt}|r_{mt} < C) = \int w_{it} E(r_{it}|r_{mt} < C) \, di,
\]

such that,

\[
MES_{i_0t}(C) \equiv \int (\hat{w}_{it}(i_0) - w_{it}) E(r_{it}|r_{mt} < C) \, di,
\]

where for instance, \(\hat{w}_{it}(i_0) = \frac{1}{2} (w_{it} + \delta(i - i_0)) \), such that,

\[
MES_{i_0t}(C) = \frac{1}{2} [E(r_{i_0t}|r_{mt} < C) - ES_{mt}(C)]
\]

Naturally, it’s only an example, which shows that you might want to consider “cross-equation restrictions” anyway.
Measures

Given the previous “linear market model,” the paper aims to find closed-form expressions to the following three measures of systemic risk,

• Marginal expected shortfall (MES),

\[\text{MES}_{it} (C) \equiv \mathbb{E}_{t-1} (r_{it} | r_{mt} < C) \]

• Systemic risk measure (SRISK),

\[\text{SRISK}_{it} (C) \equiv \max \{0, \text{Capital shortfall}_{i} (C)\}, \]

where, assuming that debt cannot be renegotiated in case of market distress,
Capital shortfall \(i \) \((C)\) \(\equiv E_{t-1} \left(-\text{Capital buffer}_i | r_{mt} < C \right)\)
\[\equiv -E_{t-1} \left(W_{it} - \kappa (D_{it} + W_{it}) \right) | r_{mt} < C \]
\[= \kappa E_{t-1} (D_{it} | r_{mt} < C) - (1 - \kappa) E_{t-1} (W_{it} | r_{mt} < C) \]
\[= \kappa D_{it} - (1 - \kappa) W_{it} (1 - \text{MES}_{it} (C)) , \]

and \(\kappa \) is a regulatory capital buffer ratio

- \(\Delta \) Conditional VaR (\(\Delta \text{CoVaR} \))—wrt to the firm being or not in financial distress,

\[\Delta \text{CoVaR}_{it} (\alpha) \equiv \text{CoVaR}_t^{m \mid r_{it} = \text{VaR}(\alpha)} - \text{CoVaR}_t^{m \mid r_{it} = \text{median}} , \]

where,

\[\text{CoVaR}_t^{m \mid r_{it} = \text{VaR}(\alpha)} : P \left(r_m \leq \text{CoVaR}_t^{m \mid r_{it} = \text{VaR}(\alpha)} \mid r_{it} = \text{VaR}(\alpha) \right) = \alpha \]
Closed-form expressions

- They’re in the paper—No point repeating them here

- All in all,
 - MES and SRISK link to firm’s co-movements with the market
 - SRISK obviously also links to leverage
 - ΔCoVaR_{it} proportional to VaR_{it}
 - Cross-sectional variation (i for given t)
 - Time-series dependence (t for given i)
 - Confirmed, empirically
 - Ranking through SRISK vs ΔCoVaR: anything goes
Extensions

• What happens to your analytical results, once we replace your “linear market model” with a standard factor model,

\[r_{it} = r_{\text{free}} + \sum_{k=1}^{K} \beta_{ik} \lambda_k + \sum_{k=1}^{K} \beta_{ik} f_{kt} + \epsilon_{mt}, \]

where \(f_{kt} \) are zero-mean factors

• Note, the “linear market model” you have is pretty poor

 – How come then your empirical findings are somewhat in line with your theoretical predictions

 – Simple, you’re using fitted measures of risk, obtained while imposing as a data generating process your “linear market model”

 * Would be surprised to see empirical results diverging from your theoretical analysis
Empirical part

- Evidence that the systemic risk measures diverge
- Strong statistical links between MES and firms betas
- SRISK links to betas, but also to leverage
A final reflection
What do these "systemic risk measures" fail to measure

- Consider, for example, SRISK—the measure that makes the most economic sense to me
 - It’s increasing in leverage, however, leverage per se doesn’t tell us many things

Short-run aggregate market effects and feedbacks are a tiny part of the story. These measures miss obvious dimensions

- *Interconnectedness*—it’s obviously not just “beta”
- *Cross-jurisdictional activity*
- *Complexity*—fixed income & other OTC products
Backtesting: I

- You might want to backtest your findings & run horse races

- Natural benchmark is the official list of the Global Systemically Important Banks (G-SIB), as understood by the Basel Committee on Banking Supervision
 - We all make reference to it
 - The list might actually affect market behavior
Global Systemically Important Banks, as of November 2012

—List prepared by the Financial Stability Board (G-SIBs in alphabetical order within each bucket)

<table>
<thead>
<tr>
<th>Bucket 5 (3.5%)</th>
<th>Bucket 2 (1.5%)</th>
<th>Bucket 1 (1.0%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Empty)</td>
<td>Bank of America</td>
<td>Bank of China</td>
</tr>
<tr>
<td></td>
<td>Bank of New York Mellon</td>
<td>BBVA</td>
</tr>
<tr>
<td></td>
<td>Credit Suisse</td>
<td>Groupe BPCE</td>
</tr>
<tr>
<td></td>
<td>Goldman Sachs</td>
<td>Group Crédit Agricole</td>
</tr>
<tr>
<td></td>
<td>Mitsubishi UFJ FG</td>
<td>ING Bank</td>
</tr>
<tr>
<td></td>
<td>Morgan Stanley</td>
<td>Mizuho FG</td>
</tr>
<tr>
<td></td>
<td>Royal Bank of Scotland</td>
<td>Nordea</td>
</tr>
<tr>
<td></td>
<td>UBS</td>
<td>Santander</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Société Générale</td>
</tr>
<tr>
<td>Citigroup</td>
<td></td>
<td>Standard Chartered</td>
</tr>
<tr>
<td>Deutsche Bank</td>
<td></td>
<td>State Street</td>
</tr>
<tr>
<td>HSBC</td>
<td></td>
<td>Sumitomo Mitsui FG</td>
</tr>
<tr>
<td>JP Morgan Chase</td>
<td></td>
<td>Unicredit Group</td>
</tr>
<tr>
<td>BNP Paribas</td>
<td></td>
<td>Wells Fargo</td>
</tr>
</tbody>
</table>

Discussion of Christophe Perignon - Antonio Mele, November 2012
Backtesting: II

- The measures you study might perhaps be relevant for timing reasons
 - The official list receives low frequency updates
 - The three systemic risk measures can be updated at high frequency
 - Do these measures help predict G-SIB in the list?

- How do your results compare with this list
 - Forecasting
 - Nowcasting
Conclusion

• Much is still needed to assess the measures of systemic risk you study
 – Change framework of analysis for the purpose of comparison—factor models
 – Add systemic dimensions such as network effects, scope, complexity of business models, messy books, etc.

• Help supervisors, through horse races & backtests against “official lists”