Discussion of

A Pricing Measure to Explain the Risk Premium in Power Markets

by Fred Espen Benth and Salvador Ortiz-Latorre

Eva Lütkebohmert

University of Freiburg

Lausanne, November 1st, 2013
Outline

1 Summary

2 Questions
Special Features of Electricity Markets

- Electricity is an essential commodity
- Power is a (mostly) non-storable asset and has to be transported in a transmission network
- Delivery takes place over a time period (swap contract)
- Rather large price variations over short time periods observable in power markets (spikes)
Power Markets

Special Features of Electricity Markets
- Electricity is an essential commodity
- Power is a (mostly) non-storable asset and has to be transported in a transmission network
- Delivery takes place over a time period (*swap contract*)
- Rather large price variations over short time periods observable in power markets (*spikes*)

Consequences
- Necessity for real-time balancing of supply and demand
- Electricity is a not directly tradeable asset
- Forward price of electricity cannot be derived by classical buy-and-hold hedging arguments
Supply and Demand Curve

Source: Risø DTU
NordPool Spot Prices

Modelling Electricity Spot Prices

Typically modelled as two-factor mean reversion dynamics with

\[
X(t) = X(0) + \int_0^t (\mu_X - \alpha_X X(s)) \, ds + \sigma_X W(t),
\]

and

\[
Y(t) = Y(0) + \int_0^t (\mu_Y - \alpha_Y Y(s)) \, ds + L(t),
\]

where

\[
L(t) = \int_0^t \int_0^\infty z N_L(ds, dz)
\]

is a Poisson random measure, which models the characteristic spikes observed in power markets.
Modelling Electricity Spot Prices

Typically modelled as two-factor mean reversion dynamics with

- one factor an OU process driven by Brownian motion

\[X(t) = X(0) + \int_0^t (\mu_X - \alpha_X X(s)) \, ds + \sigma_X W(t), \]

\[\Rightarrow \text{accounts for small variations} \]
Modelling Electricity Spot Prices

Typically modelled as two-factor mean reversion dynamics with

- one factor an OU process driven by Brownian motion

\[X(t) = X(0) + \int_0^t (\mu_X - \alpha_X X(s))ds + \sigma_X W(t), \]

\[\Rightarrow \text{accounts for small variations} \]

- second factor an OU process driven by pure jump Lévy process

\[Y(t) = Y(0) + \int_0^t (\mu_Y - \alpha_Y Y(s))ds + L(t), \]

where \(L(t) = \int_0^t \int_0^\infty zN^L(ds, dz) \) with \(N^L(ds, dz) \) a Poisson random measure,

\[\Rightarrow \text{models the characteristic spikes observed in power markets} \]
Modelling Electricity Spot Prices

Arithmetic Spot Price Model
Models the spot price directly as two-factor dynamics

\[S(t) = \Lambda_a(t) + X(t) + Y(t), \quad t \in [0, T^*] \]

Geometric Spot Price Model
Models logarithmic spot price as two-factor dynamics

\[S(t) = \Lambda_g(t) \exp (X(t) + Y(t)), \quad t \in [0, T^*] \]

\[\Lambda_a, \Lambda_g : \text{deterministic processes accounting for seasonality in spot prices} \]
Valuation of Forward Contracts

Forward Price

Forward price at time t for delivery in T with $0 < t < T < T^*$ is

$$\mathbb{E}_Q[S(T)|\mathcal{F}_t] = \mathbb{E}_P[S(T)|\mathcal{F}_t] + R^F_Q(t, T)$$

where Q is pricing measure, P is physical measure and $R^F_Q(t, T)$ denotes a risk premium.
Valuation of Forward Contracts

Forward Price

Forward price at time t for delivery in T with $0 < t < T < T^*$ is

$$\mathbb{E}_Q[S(T)|\mathcal{F}_t] = \mathbb{E}_P[S(T)|\mathcal{F}_t] + R^F_Q(t, T)$$

where Q is pricing measure, P is physical measure and $R^F_Q(t, T)$ denotes a risk premium.

Risk Premium

- Producers are willing to pay a premium for hedging their production \Rightarrow creates a negative risk premium
Valuation of Forward Contracts

Forward Price

Forward price at time t for delivery in T with $0 < t < T < T^*$ is

$$\mathbb{E}_Q[S(T)|\mathcal{F}_t] = \mathbb{E}_P[S(T)|\mathcal{F}_t] + R^F_Q(t, T)$$

where Q is pricing measure, P is physical measure and $R^F_Q(t, T)$ denotes a risk premium.

Risk Premium

- Producers are willing to pay a premium for hedging their production \Rightarrow creates a negative risk premium
- Consumers may want to hedge the price risk using forward contracts which are close to delivery \Rightarrow creates positive risk premium
Contributions

Paper introduces a change of measure which
- preserves the Ornstein-Uhlenbeck structure of the factors
Contributions

Paper introduces a change of measure which

- preserves the Ornstein-Uhlenbeck structure of the factors
- can slow down speed of mean reversion
Contributions

- Paper introduces a change of measure which preserves the Ornstein-Uhlenbeck structure of the factors.
- Can slow down speed of mean reversion.
- Can generate a stochastically varying risk premiums with stochastic non constant sign.
Contributions Cont’d

Consistency with empirical observations

Approach allows for empirically observed facts like

- stationary spot price dynamics
Consistency with empirical observations

Approach allows for empirically observed facts like

- stationary spot price dynamics
- randomly fluctuating forward prices in the long end of the market
Contributions Cont’d

Consistency with empirical observations

Approach allows for empirically observed facts like

- stationary spot price dynamics
- randomly fluctuating forward prices in the long end of the market
- positive risk premiums in the short end and negative risk premiums in the long end of the forward curve
Contributions Cont’d

Consistency with empirical observations

Approach allows for empirically observed facts like:

- stationary spot price dynamics
- randomly fluctuating forward prices in the long end of the market
- positive risk premiums in the short end and negative risk premiums in the long end of the forward curve

Consequences

- Two-factor stationary spot price model can be directly fitted to power data
Contributions Cont’d

Consistency with empirical observations

Approach allows for empirically observed facts like
- stationary spot price dynamics
- randomly fluctuating forward prices in the long end of the market
- positive risk premiums in the short end and negative risk premiums in the long end of the forward curve

Consequences

- Two-factor stationary spot price model can be directly fitted to power data
- Measure change can be calibrated by turning off (or slowing down) the speed of mean reversion
Questions

Spot Price Model

1. Method to fit the parameters on historical data? (for stochastic volatility models and NIG OU model see e.g. Collet, Duwig, Oudjane (2006))
Questions

Spot Price Model

1. Method to fit the parameters on historical data? (for stochastic volatility models and NIG OU model see e.g. Collet, Duwig, Oudjane (2006))

2. Are the trajectories generated by the model (after calibration) similar to those observed in the markets?
Questions

Spot Price Model

1. Method to fit the parameters on historical data? (for stochastic volatility models and NIG OU model see e.g. Collet, Duwig, Oudjane (2006))

2. Are the trajectories generated by the model (after calibration) similar to those observed in the markets?
 - Can mean reversion really capture the rapid decline of electricity prices after a spike?
Questions

Spot Price Model

1. Method to fit the parameters on historical data? (for stochastic volatility models and NIG OU model see e.g. Collet, Duwig, Oudjane (2006))

2. Are the trajectories generated by the model (after calibration) similar to those observed in the markets?
 - Can mean reversion really capture the rapid decline of electricity prices after a spike?
 - Using a time-inhomogeneous Lévy processes instead would allow to control for jump intensity (compare Weron (2008))
Weather conditions can lead to a high production of wind and solar energy in Germany ⇒ Over-production of energy is sold to neighboring countries (in 2012 about 22.8 TWh) Prices of green energy are then often much lower than those of nuclear power ⇒ Distressed power industry of neighboring countries

On October 2nd, 2013, Focus reported that Doris Leuthard from Swiss Federal Council is asking for an energy agreement between Switzerland and the EU

3 What about negative jumps?
Questions

Spot Price Model Cont’d

3 What about negative jumps?
 - Weather conditions can lead to a high production of wind and solar energy in Germany
Questions

Spot Price Model Cont’d

3 What about negative jumps?
 - Weather conditions can lead to a high production of wind and solar energy in Germany
 ⇒ Over-production of energy is sold to neighboring countries (in 2012 about 22.8 TWh)
Weather conditions can lead to a high production of wind and solar energy in Germany. Over-production of energy is sold to neighboring countries (in 2012 about 22.8 TWh). Prices of green energy are then often much lower than those of nuclear power.
What about negative jumps?

- Weather conditions can lead to a high production of wind and solar energy in Germany
 -⇒ Over-production of energy is sold to neighboring countries (in 2012 about 22.8 TWh)
- Prices of green energy are then often much lower than those of nuclear power
 -⇒ Distressed power industry of neighboring countries
What about negative jumps?

- Weather conditions can lead to a high production of wind and solar energy in Germany
 ⇒ Over-production of energy is sold to neighboring countries (in 2012 about 22.8 TWh)
- Prices of green energy are then often much lower than those of nuclear power
 ⇒ Distressed power industry of neighboring countries
- On October 2nd, 2013, Focus reported that Doris Leuthard from Swiss Federal Council is asking for an energy agreement between Switzerland and the EU
Questions

Pricing Measure

4 How can the change of measure be calibrated to empirical data and what are reasonable parameters for the pricing measure?
Questions

Pricing Measure

4. How can the change of measure be calibrated to empirical data and what are reasonable parameters for the pricing measure?

5. How good do model implied risk premia fit to ex-post premia observable in the market?
Questions

How can the change of measure be calibrated to empirical data and what are reasonable parameters for the pricing measure?

How good do model implied risk premia fit to ex-post premia observable in the market?

Can the model be used to identify the main economic factors which drive the risk premia in energy markets?
Thank you!