Hybrid FX-Interest rate models: a tale of two risks

Based on a joint work with M. Grasselli and E. Platen

Alessandro Gnoatto

Mathematisches Institut
Ludwig–Maximilians–Universität München

07.09.2015
Abstract

The valuation of long-dated foreign-exchange products can be reliably performed by means of frameworks where exchange and interest rates are jointly modelled. In a multi-currency setting, analytical tractability can be granted if the functional form of the FX dynamics is invariant with respect to the inversion of the spot and the construction of FX triangles via suitable products/ratios of FX rates. We provide examples of models driven by multifactor affine stochastic volatility models in a standard risk-neutral setting which fulfill the aforementioned requirement. In the second part, we consider a new stochastic volatility model that includes as special cases the square root Heston model and the 3/2 model. The new model is analytically tractable and the computation of the characteristic function of asset prices involves a non trivial extension of known results in probability. We will use this model as a building block in order to develop a multifactor version that considerably extends the model investigated in De Col et al. (2013) and Baldeaux et al. (2015), including stochastic interest rates. The new methodology does not require the existence of a risk neutral probability measure.
The market for FX options

- The pricing of FX options written on a single FX rate is a well-understood problem, the complexity of which is comparable to the case of equity options, so many different possibilities have been investigated.
The market for FX options

- The pricing of FX options written on a single FX rate is a well-understood problem, the complexity of which is comparable to the case of equity options, so many different possibilities have been investigated.
- Local volatility models.
The market for FX options

- The pricing of FX options written on a single FX rate is a well-understood problem, the complexity of which is comparable to the case of equity options, so many different possibilities have been investigated
- Local volatility models
- Stochastic volatility models
The market for FX options

- The pricing of FX options written on a single FX rate is a well-understood problem, the complexity of which is comparable to the case of equity options, so many different possibilities have been investigated
- Local volatility models
- Stochastic volatility models
- Jump-Diffusion / Lévy models
The market for FX options

- The pricing of FX options written on a single FX rate is a well-understood problem, the complexity of which is comparable to the case of equity options, so many different possibilities have been investigated.
- Local volatility models
- Stochastic volatility models
- Jump-Diffusion / Lévy models
- However, an FX desk has to manage many currencies simultaneously.
The market for FX options

- The pricing of FX options written on a single FX rate is a well-understood problem, the complexity of which is comparable to the case of equity options, so many different possibilities have been investigated.
- Local volatility models
- Stochastic volatility models
- Jump-Diffusion / Lévy models
- However, an FX desk has to manage many currencies simultaneously.
- An FX desk may be required to enter and manage position in long dated FX products.
Stylized facts: products of exchange rates

Denote by $S^{i,j}(t)$ the exchange rate between currency i and j (FORDOM convention, i.e. for a EURUSD spot of 1.20, one EUR costs 1.20 USD)
Stylized facts: products of exchange rates

Denote by $S_{i,j}^{i,j}(t)$ the exchange rate between currency i and j (FORDOM convention, i.e. for a EURUSD spot of 1.20, one EUR costs 1.20 USD)

The most important peculiarity of the FX market is that products/ratios of FX rates are still FX rates, e.g.:

$$S_{i,j}^{i,j}(t) = S_{i,l}^{i,l}(t)S_{l,j}^{i,j}(t)$$
Stylized facts: products of exchange rates

Denote by $S_{i,j}(t)$ the exchange rate between currency i and j (FORDOM convention, i.e. for a EURUSD spot of 1.20, one EUR costs 1.20 USD)

The most important peculiarity of the FX market is that products/ratios of FX rates are still FX rates, e.g.:

$$S_{i,j}(t) = S_{i,l}(t)S_{l,j}(t)$$

So, from a modelling perspective, a desireable feature of an FX model is:

$$dS_{i,j}(t) \overset{f}{=} d(S_{i,l}(t)S_{l,j}(t)).$$

in the sense that the functional form of the model should be invariant w.r.t. the construction of suitable products/ratios of exchange rates.
Triangles of smiles

Market implied volatility surfaces for currency options are quite complex → non trivial implied correlation structure among FX rates

A model able to simultaneously fit three volatility surfaces is able to adequately manage correlations in a currency triangle.
Long dated FX products

Following [Clark, 2011], the risk involved in long-dated products may be intuitively understood in terms of a simple example.

- The value of an ATM call option, with maturity T, in a Black-Scholes setting, is usually approximated by means of the formula $0.4\sigma\sqrt{T}$.
- The vega of such a position is simply given by $0.4\sqrt{T}$.
- The rho risk can be shown to scale as T.
Long dated FX products

Following [Clark, 2011], the risk involved in long-dated products may be intuitively understood in terms of a simple example.

- The value of an ATM call option, with maturity T, in a Black-Scholes setting, is usually approximated by means of the formula $0.4\sigma\sqrt{T}$.
- The vega of such a position is simply given by $0.4\sqrt{T}$.
- The rho risk can be shown to scale as T.
- For longer maturities interest rate risk dominates volatility risk.
Long dated FX products

Following [Clark, 2011], the risk involved in long-dated products may be intuitively understood in terms of a simple example.

- The value of an ATM call option, with maturity T, in a Black-Scholes setting, is usually approximated by means of the formula $0.4\sigma \sqrt{T}$.
- The vega of such a position is simply given by $0.4\sqrt{T}$.
- The rho risk can be shown to scale as T.
- **For longer maturities interest rate risk dominates volatility risk.**
- Need for a model which combines stochastic volatility and stochastic interest rates.
Rho Vs Vega risk

![Graph showing Rho and Vega risk over time](image)
What we do

We present a model with the following features

• We extend and unify the FX multifactor stochastic volatility models of [De Col et al., 2013] and [Baldeaux et al., 2015] by means of the general transform formula presented in [Grasselli, 2015]. The model
• can be jointly calibrated on different FX volatility smiles;
• is coherent with triangular relationships among FX rates;
• allows for closed form solutions for plain vanilla (calibration) instruments;
• allows for stochastic interest rates and volatilities.
What we do

We present a model with the following features

- We extend and unify the FX multifactor stochastic volatility models of [De Col et al., 2013] and [Baldeaux et al., 2015] by means of the general transform formula presented in [Grasselli, 2015]. The model
What we do

We present a model with the following features

• We extend and unify the FX multifactor stochastic volatility models of [De Col et al., 2013] and [Baldeaux et al., 2015] by means of the general transform formula presented in [Grasselli, 2015]. The model
• can be jointly calibrated on different FX volatility smiles;
What we do

We present a model with the following features

- We extend and unify the FX multifactor stochastic volatility models of [De Col et al., 2013] and [Baldeaux et al., 2015] by means of the general transform formula presented in [Grasselli, 2015]. The model
- can be jointly calibrated on different FX volatility smiles;
- is coherent with triangular relationships among FX rates;
What we do

We present a model with the following features

- We extend and unify the FX multifactor stochastic volatility models of [De Col et al., 2013] and [Baldeaux et al., 2015] by means of the general transform formula presented in [Grasselli, 2015]. The model
- can be jointly calibrated on different FX volatility smiles;
- is coherent with triangular relationships among FX rates;
- allows for closed form solutions for plain vanilla (calibration) instruments;
What we do

We present a model with the following features

• We extend and unify the FX multifactor stochastic volatility models of [De Col et al., 2013] and [Baldeaux et al., 2015] by means of the general transform formula presented in [Grasselli, 2015]. The model
• can be jointly calibrated on different FX volatility smiles;
• is coherent with triangular relationships among FX rates;
• allows for closed form solutions for plain vanilla (calibration) instruments;
• allows for stochastic interest rates and volatilities.
What we do

- Square root of each CIR factor appears both in the numerator and the denominator of the diffusion terms → spanning the 3/2 and the Heston model.
What we do

- Square root of each CIR factor appears both in the numerator and the denominator of the diffusion terms → spanning the 3/2 and the Heston model.
- Model may not admit the existence of an equivalent risk-neutral martingale measure for some economies.
What we do

• Square root of each CIR factor appears both in the numerator and the denominator of the diffusion terms \rightarrow spanning the 3/2 and the Heston model.

• Model may not admit the existence of an equivalent risk-neutral martingale measure for some economies.

• allows to span both the risk-neutral and the benchmark approach.
What we do

- Square root of each CIR factor appears both in the numerator and the denominator of the diffusion terms \rightarrow spanning the $3/2$ and the Heston model.
- Model may not admit the existence of an equivalent risk-neutral martingale measure for some economies.
- allows to span both the risk-neutral and the benchmark approach.
- Real world valuation formula for pricing (see [Platen and Heath, 2010]) and benchmarked risk minimization for hedging (see [Du and Platen, 2014])
Multi-Heston approach to FX: De Col, Gnoatto, Grasselli (2013)

1. **Classic Framework**: assume existence of a risk neutral measure
2. introduce an artificial currency S^0
3. take S^0 as (universal) numéraire for the N currencies
4. $S^0,i(t) = \text{value of one unit of the currency } i \text{ in terms of a universal numéraire}$
5. $S^0,i(t)$ evolves with multi-Heston dynamics.
Model dynamics

\(S_{t}^{0,i} \) has a multi-variate Heston stochastic volatility dynamics

\[
\frac{dS_{t}^{0,i}}{S_{t}^{0,i}} = (r^{0} - r^{i})dt - (a^{i})^{\top} \text{Diag}(\sqrt{V_{t}})dZ_{t}^{Q_{i}}, \quad i = 1, ..., N;
\]

\[
dV_{k}(t) = \kappa_{k}^{Q_{i}} (\theta_{k}^{Q_{i}} - V_{k}(t))dt + \xi_{k} \sqrt{V_{k}}dW_{k}^{Q_{i}}(t), \quad k = 1, ..., d;
\]

\[
d\langle Z_{k}, W_{h} \rangle_{t} = \rho_{k} \delta_{k,h}dt,
\]
\[
d\langle Z_{k}, Z_{h} \rangle_{t} = d\langle W_{k}, W_{h} \rangle_{t} = \delta_{k,h}dt, \quad k, h = 1, ..., d
\]

Interpretation: the dynamics of the universal numéraire denominated in the \(i \)-th currency are driven by a linear projection of the variance factor \(V(t) \) along a direction parametrized by \(a^{i} \)
Multi-Factor Heston Based dynamics

Exchange rates are ratios of the universal numéraire denominated in the corresponding currencies:

\[S_{i,j}(t) := S_{0,j}(t)/S_{0,i}(t) \]

\[\frac{dS_{i,j}(t)}{S_{i,j}(t)} = (r^i - r^j)dt + (a^i - a^j)^\top \text{Diag}(\sqrt{\mathbf{V}(t)})d\mathbf{Z}^Q(t), \quad i, j = 1, \ldots, N; \]

\[dV_k(t) = \kappa_k^Q (\theta_k^Q - V_k(t))dt + \xi_k \sqrt{V_k} dW_k^Q(t), \quad k = 1, \ldots, d; \]
Financial/analytic properties

1. Easy to extend to $N > 3$;
2. The covariation matrix among rates is positive semidefinite (bounds for correlations)
3. Heston Based dynamics: shares Heston features (Fx option pricing via Fourier transforms);
4. Triangular relation: The dynamics of all exchange rates share the same functional form

\[dS^{i,j}(t) \overset{f}{=} d(S^{i,l}(t)S^{l,j}(t)) \]
Nice calibration results but..

1. Very good fit overall
Nice calibration results but..

1. Very good fit overall
2. Good out-of-sample performance and parameter stability
Nice calibration results but..

1. Very good fit overall
2. Good out-of-sample performance and parameter stability
3. **Feller condition violated!!** (as in typical Heston-based models)
Nice calibration results but..

1. Very good fit overall
2. Good out-of-sample performance and parameter stability
3. **Feller condition violated!!** (as in typical Heston-based models)
4. Intuition: volatility spends too much time close to zero..
Nice calibration results but..

1. Very good fit overall
2. Good out-of-sample performance and parameter stability
3. **Feller condition violated!!** (as in typical Heston-based models)
4. Intuition: volatility spends too much time close to zero..
5. Technical detail or something deeper?
Nice calibration results but..

1. Very good fit overall
2. Good out-of-sample performance and parameter stability
3. **Feller condition violated!!** (as in typical Heston-based models)
4. Intuition: volatility spends too much time close to zero..
5. Technical detail or something deeper?
6. What is more: relevant consequences in practice??
A step backward: martingale or just local martingale?

- Under the (putative) risk neutral measure, discounted prices should be martingales
A step backward: martingale or just local martingale?

- Under the (putative) risk neutral measure, discounted prices should be martingales
- Is this condition satisfied in reality?
A step backward: martingale or just local martingale?

- Under the (putative) risk neutral measure, discounted prices should be martingales.
- Is this condition satisfied in reality?
- Benchmarked prices (i.e., prices discounted by the Numeraire Portfolio) are positive local martingales (hence supermartingales).
A step backward: martingale or just local martingale?

- Under the (putative) risk neutral measure, discounted prices should be martingales
- Is this condition satisfied in reality?
- benchmarked prices (i.e. prices discounted by the Numeraire Portfolio) are positive local martingales (hence supermartingales)
- moreover, the benchmarked USD savings account represents the Radon-Nikodym derivative for the putative risk neutral measure for the USD market denomination
A step backward: martingale or just local martingale?

- Under the (putative) risk neutral measure, discounted prices should be martingales.
- Is this condition satisfied in reality?
- Benchmarked prices (i.e. prices discounted by the Numeraire Portfolio) are positive local martingales (hence supermartingales).
- Moreover, the benchmarked USD savings account represents the Radon-Nikodym derivative for the putative risk neutral measure for the USD market denomination.
- Is the Radon-Nykodym derivative a true (positive) martingale or just a supermartingale?
A step backward: martingale or just local martingale?

- Under the (putative) risk neutral measure, discounted prices should be martingales.
- Is this condition satisfied in reality?
- Benchmarked prices (i.e. prices discounted by the Numeraire Portfolio) are positive local martingales (hence supermartingales).
- Moreover, the benchmarked USD savings account represents the Radon-Nikodym derivative for the putative risk neutral measure for the USD market denomination.
- Is the Radon-Nykodym derivative a true (positive) martingale or just a supermartingale?
- In the multi-Heston framework of De Col et al. (2013) all local martingales are true martingales.
A step backward: martingale or just local martingale?

- Under the (putative) risk neutral measure, discounted prices should be martingales.
- Is this condition satisfied in reality?
- Benchmarked prices (i.e. prices discounted by the Numeraire Portfolio) are positive local martingales (hence supermartingales).
- Moreover, the benchmarked USD savings account represents the Radon-Nikodym derivative for the putative risk neutral measure for the USD market denomination.
- Is the Radon-Nykodym derivative a true (positive) martingale or just a supermartingale?
- In the multi-Heston framework of De Col et al. (2013) all local martingales are true martingales.
- The multi-3/2 framework of Baldeaux et al. (2013) allows for both situations.
A step backward

- Can we build up a Heston-based model that combines the positive features of the Heston and the 3/2 models?
A step backward

- Can we build up a Heston-based model that combines the positive features of the Heston and the 3/2 models?
- Is it really necessary to include 3/2 dynamics from the beginning?
A step backward

- Can we build up a Heston-based model that combines the positive features of the Heston and the 3/2 models?
- Is it really necessary to include 3/2 dynamics from the beginning?
- Analytically tractable and possible to be calibrated?
A step backward

- Can we build up a Heston-based model that combines the positive features of the Heston and the 3/2 models?
- Is it really necessary to include 3/2 dynamics from the beginning?
- Analytically tractable and possible to be calibrated?
- A model that does not require the existence of a risk neutral measure?
Choice of the risk premium and choice of the pricing model

Starting point: asset price dynamics

\[
\frac{dS_t}{S_t} = rdt + \sqrt{V_t} \left(dZ_t + \pi_t dt \right)
\]
Choice of the risk premium and choice of the pricing model

Starting point: asset price dynamics

\[\frac{dS_t}{S_t} = rdt + \sqrt{V_t} (dZ_t + \pi_t dt) \]

then the dynamics of the GOP becomes

\[\frac{dD_t}{D_t} = rdt + < \pi_t, \pi_t dt + dZ_t > \]

\[\pi_t = \text{MARKET PRICE OF RISK} \]
Choice of the risk premium and choice of the pricing model

Starting point: asset price dynamics

\[\frac{dS_t}{S_t} = r dt + \sqrt{V_t} (dZ_t + \pi_t dt) \]

then the dynamics of the GOP becomes

\[\frac{dD_t}{D_t} = r dt + \langle \pi_t, \pi_t dt + dZ_t \rangle \]

\[\pi_t = \text{MARKET PRICE OF RISK} \]

Viceversa: choice of \(\pi \) implies certain dynamics for \(S \)!
Choice of the risk premium and choice of the pricing model

In the Black-Scholes model,

\[\pi = \frac{\mu - r}{\sqrt{V}} = \frac{\mu - r}{\sigma} \]

In the Heston model, typical choice

\[\pi_t = \frac{\mu_t - r}{\sqrt{V_t}} = \lambda \sqrt{V_t} \]

Affine risk premium:

- affine model
- same Feller under both measures

\[dV_t = \kappa(\theta - V_t)dt + \sigma \sqrt{V_t}(dW_t + \rho \lambda \sqrt{V_t}) \]
Choice of the risk premium and choice of the pricing model

Other specification: the essentially affine risk premium

\[\pi_t = \frac{\mu_t - r}{\sqrt{V_t}} = \frac{\lambda_1 V_t + \lambda_2}{\sqrt{V_t}} \]

- still affine model
- if \(\lambda_2 \neq 0 \) different Feller !!

\[dV_t = \kappa(\theta - V_t)dt + \sigma \sqrt{V_t}(dW_t + \rho \frac{\lambda_1 V_t + \lambda_2}{\sqrt{V_t}}) \]
A Unified Approach for the Multi Heston and 3/2 Models

- De Col, Gnoatto, Grasselli (2013)
 \[\pi = \lambda_1 \sqrt{V_t} \]

- Baldeaux, Grasselli, Platen (2015)
 \[\pi = \frac{\lambda_2}{\sqrt{V_t}} \]

- Gnoatto, Grasselli, Platen (2015): essentially affine!
 \[\pi = \lambda_1 \sqrt{V_t} + \frac{\lambda_2}{\sqrt{V_t}} \]

\[
\frac{dD_t}{D_t} = rdt + \left(\lambda_1 \sqrt{V_t} + \frac{\lambda_2}{\sqrt{V_t}} \right) \left(dZ_t + \left(\lambda_1 \sqrt{V_t} + \frac{\lambda_2}{\sqrt{V_t}} \right) dt \right)
\]
Modelling approach

- Given the mutual relationship between market price of risk and FX dynamics, we change our perspective and start by postulating the dynamics of the growth optimal portfolio under different currency denominations.
Modelling approach

- Given the mutual relationship between market price of risk and FX dynamics, we change our perspective and start by postulating the dynamics of the **growth optimal portfolio** under different **currency denominations**. This is the approach which was mimicked by De Col et al. (2013) by introducing the idea of an artificial currency (see above) in a pure risk-neutral setting.
Modelling approach

• Given the mutual relationship between market price of risk and FX dynamics, we change our perspective and start by postulating the dynamics of the growth optimal portfolio under different currency denominations. This is the approach which was mimicked by De Col et al. (2013) by introducing the idea of an artificial currency (see above) in a pure risk-neutral setting.

• Following Heath and Platen (2006), all exchange rates are determined as

\[S^{i,j}(t) = \frac{D^i(t)}{D^j(t)} \] (1)

for \(0 \leq t \leq \bar{T} \) and \(i, j = 1, \ldots, N \). → Model is fully symmetric!
GOP dynamics

Dynamics of the GOP denominated in the i-th currency becomes

$$\frac{dD^i(t)}{D^i(t)} = r^i dt + (a^i)^\top \text{Diag}(V(t))a^i dt$$

$$+ (b^i)^\top \text{Diag}^{-1}(V(t))b^i dt + 2(a^i)^\top b^i dt$$

$$+ (a^i)^\top \text{Diag}^{1/2}(V(t))dZ(t) + (b^i)^\top \text{Diag}^{-1/2}(V(t))dZ(t).$$

Common stochastic factor $V(t) \in \mathbb{R}^d$:

$$dV_k(t) = \kappa_k(\theta_k - V_k(t))dt + \sigma_k V_k(t)^{1/2}dW_k(t), \quad k = 1, \ldots, d,$$

where $d < W_k, Z_k \geq \rho_k dt$.
GOP dynamics

Dynamics of the GOP denominated in the i-th currency becomes

$$\frac{dD^i(t)}{D^i(t)} = r^i dt + (a^i)^\top \text{Diag}(V(t))a^i dt$$

$$+ (b^i)^\top \text{Diag}^{-1}(V(t))b^i dt + 2(a^i)^\top b^i dt$$

$$+ (a^i)^\top \text{Diag}^{1/2}(V(t))dZ(t) + (b^i)^\top \text{Diag}^{-1/2}(V(t))dZ(t).$$

Common stochastic factor $V(t) \in \mathbb{R}^d$:

$$dV_k(t) = \kappa_k(\theta_k - V_k(t)) dt + \sigma_k V_k(t)^{1/2} dW_k(t), \quad k = 1, \ldots, d,$$

where $d < W_k, Z_k >\rho_k dt$. Dynamics of $S^{i,j}$
GOP dynamics

Dynamics of the GOP denominated in the i-th currency becomes

$$
\frac{dD^i(t)}{D^i(t)} = r^i dt + (a^i)^\top \text{Diag}(V(t))a^i dt \\
+ (b^i)^\top \text{Diag}^{-1}(V(t))b^i dt + 2(a^i)^\top b^i dt \\
+ (a^i)^\top \text{Diag}^{1/2}(V(t))dZ(t) + (b^i)^\top \text{Diag}^{-1/2}(V(t))dZ(t).
$$

Common stochastic factor $V(t) \in \mathbb{R}^d$:

$$
dV_k(t) = \kappa_k(\theta_k - V_k(t))dt + \sigma_k V_k(t)^{1/2}dW_k(t), \quad k = 1, \ldots, d,
$$

where $d < W_k, Z_k \geq \rho_k dt$. Dynamics of $S^{i,j} \rightarrow$ product rule.
EXAMPLE: The 4/2 model

In the case $d = 1$

$$dV(t) = \kappa(\theta - V(t))dt + \sigma V(t)^{1/2}dW(t),$$

$$\frac{dD^i(t)}{D^i(t)} = (r^i + \pi(t)^\top \pi(t))dt + \left(a^i \sqrt{V(t)} + \frac{b^i}{\sqrt{V(t)}}\right) dZ(t),$$

where the i-th market price of risk $\pi^i(t)$ is the scalar process given by:

$$\pi^i(t) = a^i \sqrt{V(t)} + \frac{b^i}{\sqrt{V(t)}}.$$

$b^i = 0 \rightarrow$ Heston dynamics

$a^i = 0 \rightarrow$ 3/2 model
Strict local martingality

- We study the processes $\hat{B}^i(t) = \frac{B^i(t)}{D^i(t)}$, $\forall i = 1, \ldots, N$.
Strict local martingality

- We study the processes $\hat{B}^i(t) = \frac{B^i(t)}{D^i(t)}$, $\forall i = 1, \ldots, N$.
- For each i s.t. we have a strict local martingale then risk neutral pricing is not justified.
Strict local martingality

- We study the processes $\hat{B}^i(t) = \frac{B^i(t)}{D^i(t)}$, $\forall i = 1, \ldots, N$.
- For each i s.t. we have a strict local martingale then risk neutral pricing is not justified.
- We study the \mathbb{P} expectations

$$
\mathbb{E} \left[\hat{B}^i(t) \right] = \hat{B}^i_0 \prod_{k=1}^{d} \mathbb{E} \left[\xi^i_k(t) \right],
$$

for

$$
\xi^i_k(t) := \exp \left\{ -\rho_k \int_0^t (a^i_k V^1_k(s) + b^i_k V^{-1/2}_k(s))dW_k(s) \\
- \frac{1}{2} \rho_k^2 \int_0^t (a^i_k V^1_k(s) + b^i_k V^{-1/2}_k(s))^2 ds \right\}. \tag{2}
$$
• The putative change of measure involves

\[d\tilde{W}_k(t) = dW_k(t) + \rho_k (a_k^i V_k^{1/2}(s) + b_k^i V_k^{-1/2}(s))dt, \]

where \(\tilde{W}_k \) should be a Wiener process under the putative risk neutral measure.
• The putative change of measure involves

\[d\tilde{W}_k(t) = dW_k(t) + \rho_k (a^i_k V_k^{1/2}(s) + b^i_k V_k^{-1/2}(s)) dt, \]

where \(\tilde{W}_k \) should be a Wiener process under the putative risk neutral measure.

• Under \(\mathbb{P} \) the process \(V_k(t) \) does not reach 0 if the Feller condition is satisfied, i.e. \(2\kappa_k \theta_k \geq \sigma_k^2 \).
• The putative change of measure involves

\[d\tilde{W}_k(t) = dW_k(t) + \rho_k (a_k^{1/2} V_k^{1/2}(s) + b_k^{-1/2} V_k^{-1/2}(s))dt, \]

where \(\tilde{W}_k \) should be a Wiener process under the putative risk neutral measure.

• Under \(\mathbb{P} \) the process \(V_k(t) \) does not reach 0 if the Feller condition is satisfied, i.e. \(2\kappa_k \theta_k \geq \sigma_k^2 \),

• while under the putative risk neutral measure the process \(V_k(t) \) does not reach 0 if the corresponding Feller condition is satisfied, that is \(2\kappa_k \theta_k \geq \sigma_k^2 + 2\rho_k \sigma_k b_k^i \).
• The putative change of measure involves

\[d\tilde{W}_k(t) = dW_k(t) + \rho_k(a_k V_k^{1/2}(s) + b_k V_k^{-1/2}(s))dt, \]

where \(\tilde{W}_k \) should be a Wiener process under the putative risk neutral measure.

• Under \(\mathbb{P} \) the process \(V_k(t) \) does not reach 0 if the Feller condition is satisfied, i.e. \(2\kappa_k \theta_k \geq \sigma_k^2 \),

• while under the putative risk neutral measure the process \(V_k(t) \) does not reach 0 if the corresponding Feller condition is satisfied, that is \(2\kappa_k \theta_k \geq \sigma_k^2 + 2\rho_k \sigma_k b_k^i \).

• Therefore, the process \(V \) has a different behavior at 0 under the two probability measures provided that

\[\sigma_k^2 \leq 2\kappa_k \theta_k \leq \sigma_k^2 + 2\rho_k \sigma_k b_k^i. \] (3)
Analytical framework

- In this general framework it is possible to price options using Fourier methods.
Analytical framework

- In this general framework it is possible to price options using Fourier methods.
- Closed-form solution for the conditional joint characteristic function of the vector of all log growth optimal portfolio denominations.
Analytical framework

- In this general framework it is possible to price options using Fourier methods.
- Closed-form solution for the conditional joint characteristic function of the vector of all log growth optimal portfolio denominations.
- Let \(X \) be a CIR process. The key technical tool is given by the closed-form solution for the following expectation

\[
\mathbb{E} \left[X_t^{-\alpha} e^{-\lambda X_t - \mu \int_0^t X_s ds - \nu \int_0^t \frac{ds}{X_s}} \right]
\]

see Grasselli (2015).
Analytical framework

• In this general framework it is possible to price options using Fourier methods.

• Closed-form solution for the conditional joint characteristic function of the vector of all log growth optimal portfolio denominations.

• Let X be a CIR process. The key technical tool is given by the closed-form solution for the following expectation

$$\mathbb{E} \left[X_t^{-\alpha} e^{-\lambda X_t - \mu \int_0^t X_s \, ds - \nu \int_0^t \frac{ds}{X_s}} \right]$$

see Grasselli (2015).

• We extend the result to a multidimensional setting with stochastic interest rates of the form

$$r^i(t) = h^i + \langle H^i, V(t) \rangle + \langle G^i, V^{-1}(t) \rangle$$
Calibration

- We repeat the triangular calibration experiments of [De Col et al., 2013] and [Baldeaux et al., 2015].
Calibration

- We repeat the triangular calibration experiments of [De Col et al., 2013] and [Baldeaux et al., 2015].
- For a given trading date perform a joint simultaneous calibration to the three FX implied volatility surfaces of a currency triangle.
Calibration

- We repeat the triangular calibration experiments of [De Col et al., 2013] and [Baldeaux et al., 2015].
- For a given trading date perform a joint simultaneous calibration to the three FX implied volatility surfaces of a currency triangle.
- Full 4/2 model specification: consider both Heston and 3/2 effects.
Calibration

- We repeat the triangular calibration experiments of [De Col et al., 2013] and [Baldeaux et al., 2015].
- For a given trading date perform a joint simultaneous calibration to the three FX implied volatility surfaces of a currency triangle.
- Full 4/2 model specification: consider both Heston and 3/2 effects let the market decide on the relevance of the two effects.
Calibration

- We repeat the triangular calibration experiments of [De Col et al., 2013] and [Baldeaux et al., 2015].
- For a given trading date perform a joint simultaneous calibration to the three FX implied volatility surfaces of a currency triangle.
- Full 4/2 model specification: consider both Heston and 3/2 effects let the market decide on the relevance of the two effects.
- Perform Feller test using the calibrated parameters an all (putative) pricing measures.
Calibration

• We repeat the triangular calibration experiments of De Col et al., 2013] and [Baldeaux et al., 2015].

• For a given trading date perform a joint simultaneous calibration to the three FX implied volatility surfaces of a currency triangle.

• Full 4/2 model specification: consider both Heston and 3/2 effects let the market decide on the relevance of the two effects.

• Perform Feller test using the calibrated parameters an all (putative) pricing measures.

• Low maturities → Vega risk dominates → deterministic interest rates for simplicity.
Joint Calibrations
<table>
<thead>
<tr>
<th>Measure</th>
<th>Test</th>
<th>02.23.2015</th>
<th>03.23.2015</th>
<th>04.22.2015</th>
<th>05.22.2015</th>
<th>06.22.2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$2\kappa_k \theta_k - \sigma_k^2$</td>
<td>0.0806</td>
<td>0.0490</td>
<td>0.0484</td>
<td>0.0488</td>
<td>0.0489</td>
</tr>
<tr>
<td>Q_usd</td>
<td>$2\kappa_k \theta_k - \left(\sigma_k^2 + 2\rho_k \sigma_k b_k^{\text{usd}} \right)$</td>
<td>-0.0189</td>
<td>0.0135</td>
<td>-0.0007</td>
<td>-0.0027</td>
<td>0.0010</td>
</tr>
<tr>
<td>Q_eur</td>
<td>$2\kappa_k \theta_k - \left(\sigma_k^2 + 2\rho_k \sigma_k b_k^{\text{eur}} \right)$</td>
<td>0.1967</td>
<td>-0.0350</td>
<td>-0.0690</td>
<td>-0.0745</td>
<td>-0.0767</td>
</tr>
<tr>
<td>Q_jpy</td>
<td>$2\kappa_k \theta_k - \left(\sigma_k^2 + 2\rho_k \sigma_k b_k^{\text{jpy}} \right)$</td>
<td>0.0159</td>
<td>0.0134</td>
<td>-0.0056</td>
<td>-0.0132</td>
<td>-0.0148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3471</td>
<td>0.0338</td>
<td>0.0320</td>
<td>0.0215</td>
<td>0.0262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0221</td>
<td>0.0089</td>
<td>0.0031</td>
<td>0.0017</td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2547</td>
<td>0.0172</td>
<td>0.0097</td>
<td>0.0005</td>
<td>0.0087</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure</th>
<th>Test</th>
<th>02.23.2015</th>
<th>03.23.2015</th>
<th>04.22.2015</th>
<th>05.22.2015</th>
<th>06.22.2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Risk neutral pricing possible</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Q_usd</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Q_eur</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Q_jpy</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Tabelle: This table reports the Feller test under different (putative) measures. The value of the test is obtained from the calibrated parameters on multiple trading dates.
Implications

- Market seems to suggest the presence of regime switches between pricing approaches.
- Need for a model which accommodates both frameworks.
Implications

- Market seems to suggest the presence of regime switches between pricing approaches.
- Need for a model which accommodates both frameworks.
- Toy pricing example: valuation of a zero-coupon bond in the absence of a martingale measure under deterministic interest rates. → significant pricing impact.
Implications

- Market seems to suggest the presence of **regime switches** between pricing approaches.
- Need for a model which accommodates both frameworks.
- Toy pricing example: valuation of a zero-coupon bond in the absence of a martingale measure under deterministic interest rates. → significant pricing impact.
- Hedging performed by resorting on benchmarked risk minimization. We attain the final payoff using a non-self financing trading strategy with a lower initial value.
Thank you for your attention!

A Benchmark Approach to Quantitative Finance.
Springer-Verlag.