Nonlinear Price Impact and Portfolio Choice

Paolo Guasoni1,2 Marko Weber2,3

Boston University1

Dublin City University2

Scuola Normale Superiore3

Swissquote Conference, EPFL Lausanne
September 7th, 2015
Outline

- Motivation:
 Optimal Rebalancing and Execution.
- Model:
 Nonlinear Price Impact.
 Constant investment opportunities and risk aversion.
- Results:
 Optimal policy and welfare. Implications.
Outline

- Motivation:
 Optimal Rebalancing and Execution.
- Model:
 Nonlinear Price Impact.
 Constant investment opportunities and risk aversion.
- Results:
 Optimal policy and welfare. Implications.
Outline

- Motivation:
 Optimal Rebalancing and Execution.

- Model:
 Nonlinear Price Impact.
 Constant investment opportunities and risk aversion.

- Results:
 Optimal policy and welfare. Implications.
Price Impact and Market Frictions

• Classical theory: no price impact. Same price for any quantity bought or sold. Merton (1969) and many others.

• Bid-ask spread: constant (proportional) “impact”. Price depends only on sign of trade. Constantinides (1985), Davis and Norman (1990), and extensions.

• Price linear in trading rate. Asymmetric information equilibria (Kyle, 1985), (Back, 1992). Quadratic transaction costs (Garleanu and Pedersen, 2013)

• Literature on nonlinear impact focuses on optimal execution. Portfolio choice?
Price Impact and Market Frictions

- Classical theory: no price impact. Same price for any quantity bought or sold. Merton (1969) and many others.

- Bid-ask spread: constant (proportional) “impact”. Price depends only on sign of trade. Constantinides (1985), Davis and Norman (1990), and extensions.

- Price linear in trading rate. Asymmetric information equilibria (Kyle, 1985), (Back, 1992). Quadratic transaction costs (Garleanu and Pedersen, 2013)

- Literature on nonlinear impact focuses on optimal execution. Portfolio choice?
Price Impact and Market Frictions

- Classical theory: no price impact. Same price for any quantity bought or sold. Merton (1969) and many others.

- Bid-ask spread: constant (proportional) “impact”. Price depends only on sign of trade. Constantinides (1985), Davis and Norman (1990), and extensions.

- Price linear in trading rate. Asymmetric information equilibria (Kyle, 1985), (Back, 1992). Quadratic transaction costs (Garleanu and Pedersen, 2013)

- Literature on nonlinear impact focuses on optimal execution. Portfolio choice?
Price Impact and Market Frictions

- Classical theory: no price impact. Same price for any quantity bought or sold. Merton (1969) and many others.
- Bid-ask spread: constant (proportional) “impact”. Price depends only on sign of trade. Constantinides (1985), Davis and Norman (1990), and extensions.
- Price linear in trading rate. Asymmetric information equilibria (Kyle, 1985), (Back, 1992). Quadratic transaction costs (Garleanu and Pedersen, 2013)
- Literature on nonlinear impact focuses on optimal execution. Portfolio choice?
Price Impact and Market Frictions

- Classical theory: no price impact.
 Same price for any quantity bought or sold.
 Merton (1969) and many others.

- Bid-ask spread: constant (proportional) “impact”.
 Price depends only on sign of trade.
 Constantinides (1985), Davis and Norman (1990), and extensions.

- Price linear in trading rate.
 Asymmetric information equilibria (Kyle, 1985), (Back, 1992).
 Quadratic transaction costs (Garleanu and Pedersen, 2013)

- Price nonlinear in trading rate.
 Empirical evidence: Hasbrouck and Seppi (2001), Plerou et al. (2002),
 Lillo et al. (2003), Almgren et al. (2005).

- Literature on nonlinear impact focuses on optimal execution.
 Portfolio choice?
Portfolio Choice with Frictions

- With constant investment opportunities and constant relative risk aversion:
 - Classical theory: hold portfolio weights constant at Merton target.
 - Proportional bid-ask spreads: hold portfolio weight within buy and sell boundaries (no-trade region).
 - Linear impact: trading rate proportional to distance from target.
 - Rebalancing rule for nonlinear impact?
Portfolio Choice with Frictions

- With constant investment opportunities and constant relative risk aversion:
- Classical theory: hold portfolio weights constant at Merton target.
- Proportional bid-ask spreads:
 hold portfolio weight within buy and sell boundaries (no-trade region).
- Linear impact:
 trading rate proportional to distance from target.
- Rebalancing rule for nonlinear impact?
Portfolio Choice with Frictions

- With constant investment opportunities and constant relative risk aversion:
 - Classical theory: hold portfolio weights constant at Merton target.
 - Proportional bid-ask spreads: hold portfolio weight within buy and sell boundaries (no-trade region).
- Linear impact:
 trading rate proportional to distance from target.
- Rebalancing rule for nonlinear impact?
Portfolio Choice with Frictions

- With constant investment opportunities and constant relative risk aversion:
 - Classical theory: hold portfolio weights constant at Merton target.
 - Proportional bid-ask spreads: hold portfolio weight within buy and sell boundaries (no-trade region).
 - Linear impact: trading rate proportional to distance from target.
- Rebalancing rule for nonlinear impact?
Portfolio Choice with Frictions

- With constant investment opportunities and constant relative risk aversion:
 - Classical theory: hold portfolio weights constant at Merton target.
 - Proportional bid-ask spreads: hold portfolio weight within buy and sell boundaries (no-trade region).
 - Linear impact: trading rate proportional to distance from target.
 - Rebalancing rule for nonlinear impact?
This Talk

• Inputs
 • Price exogenous. Geometric Brownian Motion.
 • Constant relative risk aversion and long horizon.
 • Nonlinear price impact:
 trading rate one-percent higher means impact α-percent higher.

• Outputs
 • Optimal trading policy and welfare.
 • High liquidity asymptotics.
 • Linear impact and bid-ask spreads as extreme cases.

• Focus is on temporary price impact:
 • No permanent impact as in Huberman and Stanzl (2004)
 • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).
This Talk

- **Inputs**
 - Price exogenous. Geometric Brownian Motion.
 - Constant relative risk aversion and long horizon.
 - Nonlinear price impact: trading rate one-percent higher means impact α-percent higher.

- **Outputs**
 - Optimal trading policy and welfare.
 - High liquidity asymptotics.
 - Linear impact and bid-ask spreads as extreme cases.

- **Focus is on temporary price impact:**
 - No permanent impact as in Huberman and Stanzl (2004)
This Talk

• Inputs
 • Price exogenous. Geometric Brownian Motion.
 • Constant relative risk aversion and long horizon.
 • Nonlinear price impact: trading rate one-percent higher means impact α-percent higher.

• Outputs
 • Optimal trading policy and welfare.
 • High liquidity asymptotics.
 • Linear impact and bid-ask spreads as extreme cases.

• Focus is on temporary price impact:
 • No permanent impact as in Huberman and Stanzl (2004)
 • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).
This Talk

• Inputs
 • Price exogenous. Geometric Brownian Motion.
 • Constant relative risk aversion and long horizon.
 • Nonlinear price impact:
 trading rate one-percent higher means impact α-percent higher.

• Outputs
 • Optimal trading policy and welfare.
 • High liquidity asymptotics.
 • Linear impact and bid-ask spreads as extreme cases.

• Focus is on temporary price impact:
 • No permanent impact as in Huberman and Stanzl (2004)
 • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).
This Talk

• Inputs
 • Price exogenous. Geometric Brownian Motion.
 • Constant relative risk aversion and long horizon.
 • Nonlinear price impact:
 trading rate one-percent higher means impact α-percent higher.

• Outputs
 • Optimal trading policy and welfare.
 • High liquidity asymptotics.
 • Linear impact and bid-ask spreads as extreme cases.

• Focus is on temporary price impact:
 • No permanent impact as in Huberman and Stanzl (2004)
 • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).
This Talk

• Inputs
 • Price exogenous. Geometric Brownian Motion.
 • Constant relative risk aversion and long horizon.
 • Nonlinear price impact:
 trading rate one-percent higher means impact α-percent higher.

• Outputs
 • Optimal trading policy and welfare.
 • High liquidity asymptotics.
 • Linear impact and bid-ask spreads as extreme cases.

• Focus is on temporary price impact:
 • No permanent impact as in Huberman and Stanzl (2004)
 • No transient impact as in Obizhaeva and Wang (2006) or Gatheral (2010).
This Talk

- **Inputs**
 - Price exogenous. Geometric Brownian Motion.
 - Constant relative risk aversion and long horizon.
 - Nonlinear price impact:
 trading rate one-percent higher means impact α-percent higher.

- **Outputs**
 - Optimal trading policy and welfare.
 - High liquidity asymptotics.
 - Linear impact and bid-ask spreads as extreme cases.

- **Focus is on temporary price impact:**
 - No permanent impact as in Huberman and Stanzl (2004)
This Talk

• **Inputs**
 - Price exogenous. Geometric Brownian Motion.
 - Constant relative risk aversion and long horizon.
 - Nonlinear price impact:
 trading rate one-percent higher means impact α-percent higher.

• **Outputs**
 - Optimal trading policy and welfare.
 - High liquidity asymptotics.
 - Linear impact and bid-ask spreads as extreme cases.

• **Focus is on temporary price impact:**
 - No permanent impact as in Huberman and Stanzl (2004)
This Talk

- **Inputs**
 - Price exogenous. Geometric Brownian Motion.
 - Constant relative risk aversion and long horizon.
 - Nonlinear price impact: trading rate one-percent higher means impact α-percent higher.

- **Outputs**
 - Optimal trading policy and welfare.
 - High liquidity asymptotics.
 - Linear impact and bid-ask spreads as extreme cases.

- **Focus is on temporary price impact:**
 - No permanent impact as in Huberman and Stanzl (2004)
This Talk

• **Inputs**
 - Price exogenous. Geometric Brownian Motion.
 - Constant relative risk aversion and long horizon.
 - Nonlinear price impact:
 trading rate one-percent higher means impact α-percent higher.

• **Outputs**
 - Optimal trading policy and welfare.
 - High liquidity asymptotics.
 - Linear impact and bid-ask spreads as extreme cases.

• **Focus is on temporary price impact:**
 - No permanent impact as in Huberman and Stanzl (2004)
This Talk

- **Inputs**
 - Price exogenous. Geometric Brownian Motion.
 - Constant relative risk aversion and long horizon.
 - Nonlinear price impact:
 trading rate one-percent higher means impact α-percent higher.

- **Outputs**
 - Optimal trading policy and welfare.
 - High liquidity asymptotics.
 - Linear impact and bid-ask spreads as extreme cases.

- **Focus is on temporary price impact:**
 - No permanent impact as in Huberman and Stanzl (2004)
Market

- Brownian Motion $(W_t)_{t \geq 0}$ with natural filtration $(\mathcal{F}_t)_{t \geq 0}$.
- Best quoted price of risky asset. Price for an infinitesimal trade.

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$$

- Trade $\Delta \theta$ shares over time interval Δt. Order filled at price

$$\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \left| \frac{S_t \Delta \theta_t}{X_t \Delta t} \right|^\alpha \sgn(\dot{\theta}) \right)$$

where X_t is investor’s wealth. Proxies total market’s wealth.
- λ measures illiquidity. $1/\lambda$ market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity $|\Delta \theta|$ or shorter execution time Δt.
 Price linear in quantity, inversely proportional to execution time.
- Impact of dollar trade $S_t \Delta \theta$ declines as large investor’s wealth increases.
- Makes model scale-invariant.
 Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \left| \frac{S_t \Delta \theta_t}{X_t \Delta t} \right|^\alpha \text{sgn}(\dot{\theta}) \right)
\]

where \(X_t\) is investor’s wealth. Proxies total market’s wealth.

- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.
- Impact of dollar trade \(S_t \Delta \theta\) declines as large investor’s wealth increases.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \left|\frac{S_t \Delta \theta t}{X_t \Delta t}\right|^\alpha \text{sgn}(\dot{\theta})\right)
\]

where \(X_t\) is investor’s wealth. Proxies total market’s wealth.

- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.
- Impact of dollar trade \(S_t \Delta \theta\) declines as large investor’s wealth increases.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \left| \frac{S_t \Delta \theta_t}{X_t \Delta t} \right|^\alpha \right) \operatorname{sgn}(\dot{\theta})
\]

where \(X_t\) is investor’s wealth. Proxies total market’s wealth.
- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.
- Impact of dollar trade \(S_t \Delta \theta\) declines as large investor’s wealth increases.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \left| \frac{S_t \Delta \theta}{X_t \Delta t} \right|^{\alpha} \operatorname{sgn}(\dot{\theta}) \right)
\]

where \(X_t\) is investor’s wealth. Proxies total market’s wealth.

- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.

- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.

- Impact of dollar trade \(S_t \Delta \theta\) declines as large investor’s wealth increases.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- *Best quoted* price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \left| \frac{S_t \Delta \theta_t}{X_t \Delta t} \right|^\alpha \right) \operatorname{sgn}(\dot{\theta})
\]

where \(X_t\) is investor’s wealth. Proxies total market’s wealth.
- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.
- Impact of dollar trade \(S_t \Delta \theta\) declines as large investor’s wealth increases.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Market

- Brownian Motion \((W_t)_{t \geq 0}\) with natural filtration \((\mathcal{F}_t)_{t \geq 0}\).
- Best quoted price of risky asset. Price for an infinitesimal trade.

\[
\frac{dS_t}{S_t} = \mu dt + \sigma dW_t
\]

- Trade \(\Delta \theta\) shares over time interval \(\Delta t\). Order filled at price

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \left| \frac{S_t \Delta \theta}{X_t \Delta t} \right|^{\alpha} \operatorname{sgn}(\dot{\theta}) \right)
\]

where \(X_t\) is investor’s wealth. Proxies total market’s wealth.

- \(\lambda\) measures illiquidity. \(1/\lambda\) market depth. Like Kyle’s (1985) lambda.
- Price worse for larger quantity \(|\Delta \theta|\) or shorter execution time \(\Delta t\). Price linear in quantity, inversely proportional to execution time.
- Impact of dollar trade \(S_t \Delta \theta\) declines as large investor’s wealth increases.
- Makes model scale-invariant. Doubling wealth, and all subsequent trades, doubles final payoff exactly.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta/\theta$. Consequences?
 - Quantities ($\Delta \theta$):
 \[
 \tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}
 \]
 - Price impact independent of price. Not invariant to stock splits!
 - Suitable for short horizons (liquidation) or mean-variance criteria.
 - Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.
 \[
 \tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t}\right)
 \]
 - Problematic. Infinite price impact with cash position.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta / \theta$. Consequences?
- Quantities ($\Delta \theta$):

$$\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}$$

- Price impact independent of price. Not invariant to stock splits!
- Suitable for short horizons (liquidation) or mean-variance criteria.
- Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

$$\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t}\right)$$

- Problematic. Infinite price impact with cash position.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta/\theta$. Consequences?
- Quantities ($\Delta \theta$):

\[
\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}
\]

- Price impact independent of price. Not invariant to stock splits!
- Suitable for short horizons (liquidation) or mean-variance criteria.
- Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t}\right)
\]

- Problematic. Infinite price impact with cash position.
Alternatives?

• Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta / \theta$. Consequences?

• Quantities ($\Delta \theta$):

\[
\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}
\]

• Price impact independent of price. Not invariant to stock splits!

• Suitable for short horizons (liquidation) or mean-variance criteria.

• Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t} \right)
\]

• Problematic. Infinite price impact with cash position.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta / \theta$. Consequences?

- Quantities ($\Delta \theta$):

$$\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}$$

- Price impact independent of price. Not invariant to stock splits!
- Suitable for short horizons (liquidation) or mean-variance criteria.
- Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

$$\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t}\right)$$

- Problematic. Infinite price impact with cash position.
Alternatives?

- Alternatives: quantities $\Delta \theta$, or share turnover $\Delta \theta / \theta$. Consequences?

- Quantities ($\Delta \theta$):

\[
\tilde{S}_t(\Delta \theta) := S_t + \lambda \frac{\Delta \theta}{\Delta t}
\]

- Price impact independent of price. Not invariant to stock splits!
- Suitable for short horizons (liquidation) or mean-variance criteria.
- Share turnover:
 Stationary measure of trading volume (Lo and Wang, 2000). Observable.

\[
\tilde{S}_t(\Delta \theta) := S_t \left(1 + \lambda \frac{\Delta \theta}{\theta_t \Delta t} \right)
\]

- Problematic. Infinite price impact with cash position.
Wealth and Portfolio

- Continuous time: cash position

\[dC_t = -S_t \left(1 + \lambda \left| \frac{\dot{\theta} S_t}{X_t} \right|^\alpha \text{sgn}(\dot{\theta}) \right) d\theta_t = - \left(\frac{S_t \dot{\theta} t}{X_t} + \lambda \left| \frac{\dot{\theta} S_t}{X_t} \right|^{1+\alpha} \right) X_t dt \]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta} S_t}{X_t} \).
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(X_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{X_t} \)

\[\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda |u_t|^{1+\alpha} dt \]

\[dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t |u_t|^{1+\alpha})) dt + \sigma Y_t(1 - Y_t) dW_t \]

- Illiquidity...

- ...reduces portfolio return \((-\lambda u_t^{1+\alpha})\).
 Turnover effect quadratic: quantities times price impact.

- ...increases risky weight \(\lambda Y_t u_t^{1+\alpha}\). Buy: pay more cash. Sell: get less.
 Turnover effect linear in risky weight \(Y_t\). Vanishes for cash position.
Wealth and Portfolio

- Continuous time: cash position

\[dC_t = -S_t \left(1 + \lambda \left| \frac{\dot{S}_t}{X_t} \right|^\alpha \text{sgn}(\dot{\theta}) \right) d\theta_t = - \left(\frac{S_t \dot{\theta}_t}{X_t} + \lambda \left| \frac{\dot{\theta}_t S_t}{X_t} \right|^{1+\alpha} \right) X_t dt \]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta}_t S_t}{X_t} \).
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(X_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{X_t} \)

\[
\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda |u_t|^{1+\alpha} dt
\]

\[
dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t|u_t|^{1+\alpha}))dt + \sigma Y_t(1 - Y_t)dW_t
\]

- Illiquidity...

- ...reduces portfolio return \((-\lambda u_t^{1+\alpha})\).
 Turnover effect quadratic: quantities times price impact.

- ...increases risky weight \((\lambda Y_t u_t^{1+\alpha})\).
 Buy: pay more cash. Sell: get less.
 Turnover effect linear in risky weight \(Y_t \). Vanishes for cash position.
Wealth and Portfolio

- Continuous time: cash position

\[dC_t = -S_t \left(1 + \lambda \left| \frac{\dot{\theta}_t S_t}{\dot{X}_t} \right|^\alpha \text{sgn}(\dot{\theta}) \right) d\theta_t = - \left(\frac{S_t \dot{\theta}_t}{\dot{X}_t} + \lambda \left| \frac{\dot{\theta}_t S_t}{\dot{X}_t} \right|^{1+\alpha} \right) X_t dt \]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta}_t S_t}{\dot{X}_t} \).
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(X_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{\dot{X}_t} \)

\[\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda|u_t|^{1+\alpha} dt \]
\[dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t|u_t|^{1+\alpha}))dt + \sigma Y_t(1 - Y_t)dW_t \]

- Illiquidity...

- ...reduces portfolio return \((-\lambda u_t^{1+\alpha})\).
 Turnover effect quadratic: quantities times price impact.

- ...increases risky weight \((\lambda Y_t u_t^{1+\alpha})\). Buy: pay more cash. Sell: get less.
 Turnover effect linear in risky weight \(Y_t \). Vanishes for cash position.
Wealth and Portfolio

- Continuous time: cash position

\[dC_t = -S_t \left(1 + \lambda \left| \frac{\dot{\theta}_t S_t}{X_t} \right|^\alpha \right) \operatorname{sgn}(\dot{\theta}) \] \[d\theta_t = -\left(\frac{S_t \dot{\theta}_t}{X_t} + \lambda \left| \frac{\dot{\theta}_t S_t}{X_t} \right|^{1+\alpha} \right) X_t dt \]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta}_t S_t}{X_t} \).
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(X_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{X_t} \)

\[\frac{dX_t}{X_t} = Y_t (\mu dt + \sigma dW_t) - \lambda |u_t|^{1+\alpha} dt \]
\[dY_t = (Y_t (1 - Y_t) (\mu - Y_t \sigma^2) + (u_t + \lambda Y_t |u_t|^{1+\alpha})) dt + \sigma Y_t (1 - Y_t) dW_t \]

- Illiquidity...

 ...reduces portfolio return \(-\lambda u_t^{1+\alpha}\).
 Turnover effect quadratic: quantities times price impact.

 ...increases risky weight \((\lambda Y_t u_t^{1+\alpha})\). Buy: pay more cash. Sell: get less.
 Turnover effect linear in risky weight \(Y_t \). Vanishes for cash position.
Wealth and Portfolio

- Continuous time: cash position

 \[dC_t = -S_t \left(1 + \lambda \left| \frac{\dot{\theta}_t S_t}{X_t} \right|^\alpha \right) d\theta_t = - \left(\frac{S_t \dot{\theta}_t}{X_t} + \lambda \left| \frac{\dot{\theta}_t S_t}{X_t} \right|^{1+\alpha} \right) X_t dt \]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta}_t S_t}{X_t} \).
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(X_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{X_t} \)

 \[
 \frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda |u_t|^{1+\alpha} dt \\
 dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t |u_t|^{1+\alpha})) dt + \sigma Y_t(1 - Y_t) dW_t
 \]

- Illiquidity...

- ...reduces portfolio return \((-\lambda u_t^{1+\alpha})\).
 Turnover effect quadratic: quantities times price impact.

- ...increases risky weight \((\lambda Y_t u_t^{1+\alpha})\). Buy: pay more cash. Sell: get less.
 Turnover effect linear in risky weight \(Y_t \). Vanishes for cash position.
Wealth and Portfolio

- Continuous time: cash position

\[dC_t = -S_t \left(1 + \lambda \left| \frac{\dot{\theta} S_t}{X_t} \right|^\alpha \text{sgn}(\dot{\theta}) \right) d\theta_t = -\left(\frac{S_t \dot{\theta}}{X_t} + \lambda \left| \frac{\dot{\theta} S_t}{X_t} \right|^{1+\alpha} \right) X_t dt \]

- Trading volume as wealth turnover \(u_t := \frac{\dot{\theta} S_t}{X_t} \).
 Amount traded in unit of time, as fraction of wealth.

- Dynamics for wealth \(X_t := \theta_t S_t + C_t \) and risky portfolio weight \(Y_t := \frac{\theta_t S_t}{X_t} \)

\[
\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda |u_t|^{1+\alpha} dt
\]

\[
dY_t = \left(Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t |u_t|^{1+\alpha}) \right) dt + \sigma Y_t(1 - Y_t)dW_t
\]

- Illiquidity...

- ...reduces portfolio return \(-\lambda u_t^{1+\alpha} \).
 Turnover effect quadratic: quantities times price impact.

- ...increases risky weight \(\lambda Y_t u_t^{1+\alpha} \).
 Buy: pay more cash. Sell: get less.
 Turnover effect linear in risky weight \(Y_t \). Vanishes for cash position.
Admissible Strategies

Definition

Admissible strategy: process \((u_t)_{t \geq 0}\), adapted to \(\mathcal{F}_t\), such that system

\[
\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda |u_t|^{1+\alpha} dt \\
\frac{dY_t}{Y_t} = (Y_t(1 - Y_t)(\mu - Y_t\sigma^2) + (u_t + \lambda Y_t|u_t|^{1+\alpha}))dt + \sigma Y_t(1 - Y_t)dW_t
\]

has unique solution satisfying \(X_t \geq 0\) a.s. for all \(t \geq 0\).

- Contrast to models without frictions or with transaction costs: control variable is not risky weight \(Y_t\), but its “rate of change” \(u_t\).
- Portfolio weight \(Y_t\) is now a *state variable*.
- Illiquid vs. perfectly liquid market. Steering a ship vs. driving a race car.
- Frictionless solution \(Y_t = \frac{\mu}{\gamma \sigma^2}\) unfeasible. A still ship in stormy sea.
Admissible Strategies

Definition

Admissible strategy: process \((u_t)_{t \geq 0}\), adapted to \(\mathcal{F}_t\), such that system

\[
\frac{dX_t}{X_t} = Y_t(\mu \, dt + \sigma \, dW_t) - \lambda |u_t|^{1+\alpha} \, dt
\]

\[
dY_t = (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t |u_t|^{1+\alpha})) \, dt + \sigma Y_t(1 - Y_t) \, dW_t
\]

has unique solution satisfying \(X_t \geq 0\) a.s. for all \(t \geq 0\).

- Contrast to models without frictions or with transaction costs: control variable is not risky weight \(Y_t\), but its “rate of change” \(u_t\).
- Portfolio weight \(Y_t\) is now a state variable.
- Illiquid vs. perfectly liquid market.
 Steering a ship vs. driving a race car.
- Frictionless solution \(Y_t = \frac{\mu}{\gamma \sigma^2}\) unfeasible. A still ship in stormy sea.
Admissible Strategies

Definition

Admissible strategy: process \((u_t)_{t \geq 0}\), adapted to \(\mathcal{F}_t\), such that system

\[
\frac{dX_t}{X_t} = Y_t(\mu dt + \sigma dW_t) - \lambda |u_t|^{1+\alpha} dt
\]

\[
dY_t = (Y_t(1 - Y_t)(\mu - Y_t\sigma^2) + (u_t + \lambda Y_t|u_t|^{1+\alpha}))dt + \sigma Y_t(1 - Y_t)dW_t
\]

has unique solution satisfying \(X_t \geq 0\) a.s. for all \(t \geq 0\).

- Contrast to models without frictions or with transaction costs: control variable is not risky weight \(Y_t\), but its “rate of change” \(u_t\).
- Portfolio weight \(Y_t\) is now a state variable.
- Illiquid vs. perfectly liquid market. Steering a ship vs. driving a race car.
- Frictionless solution \(Y_t = \frac{\mu}{\gamma\sigma^2}\) unfeasible. A still ship in stormy sea.
Admissible Strategies

Definition

Admissible strategy: process \((u_t)_{t \geq 0}\), adapted to \(\mathcal{F}_t\), such that system

\[
\begin{align*}
\frac{dX_t}{X_t} &= Y_t(\mu dt + \sigma dW_t) - \lambda |u_t|^{1+\alpha} dt \\
dY_t &= (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t |u_t|^{1+\alpha}))dt + \sigma Y_t(1 - Y_t)dW_t
\end{align*}
\]

has unique solution satisfying \(X_t \geq 0\) a.s. for all \(t \geq 0\).

- Contrast to models without frictions or with transaction costs: control variable is not risky weight \(Y_t\), but its “rate of change” \(u_t\).
- Portfolio weight \(Y_t\) is now a state variable.
- Illiquid vs. perfectly liquid market. Steering a ship vs. driving a race car.
- Frictionless solution \(Y_t = \frac{\mu}{\gamma \sigma^2}\) unfeasible. A still ship in stormy sea.
Admissible Strategies

Definition

Admissible strategy: process \((u_t)_{t \geq 0}\), adapted to \(\mathcal{F}_t\), such that system

\[
\begin{align*}
\frac{dX_t}{X_t} &= Y_t(\mu dt + \sigma dW_t) - \lambda |u_t|^{1+\alpha} dt \\
\frac{dY_t}{Y_t} &= (Y_t(1 - Y_t)(\mu - Y_t \sigma^2) + (u_t + \lambda Y_t |u_t|^{1+\alpha})) dt + \sigma Y_t(1 - Y_t) dW_t
\end{align*}
\]

has unique solution satisfying \(X_t \geq 0\) a.s. for all \(t \geq 0\).

- Contrast to models without frictions or with transaction costs: control variable is not risky weight \(Y_t\), but its “rate of change” \(u_t\).
- Portfolio weight \(Y_t\) is now a state variable.
- Illiquid vs. perfectly liquid market.
 Steering a ship vs. driving a race car.
- Frictionless solution \(Y_t = \frac{\mu}{\gamma \sigma^2}\) unfeasible. A still ship in stormy sea.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 $$\max_u \lim_{T \to \infty} \frac{1}{T} \log \mathbb{E} \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}$$

- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with linear impact and transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 $$\max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}$$
 - Tradeoff between speed and impact.
 - Optimal policy and welfare.
 - Implied trading volume.
 - Dependence on parameters.
 - Asymptotics for small λ.
 - Comparison with linear impact and transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:

$$\max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}$$

- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with linear impact and transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:

$$\max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}$$

- Tradeoff between speed and impact.
- Optimal policy and welfare.
 - Implied trading volume.
 - Dependence on parameters.
 - Asymptotics for small λ.
 - Comparison with linear impact and transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 \[\max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_{T}^{1-\gamma} \right]^{\frac{1}{1-\gamma}} \]
- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with linear impact and transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 \[
 \max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}
 \]
- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
 - Asymptotics for small λ.
 - Comparison with linear impact and transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:
 \[
 \max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}
 \]
- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with linear impact and transaction costs.
Objective

- Investor with relative risk aversion γ.
- Maximize equivalent safe rate, i.e., power utility over long horizon:

$$\max_u \lim_{T \to \infty} \frac{1}{T} \log E \left[X_T^{1-\gamma} \right]^{\frac{1}{1-\gamma}}$$

- Tradeoff between speed and impact.
- Optimal policy and welfare.
- Implied trading volume.
- Dependence on parameters.
- Asymptotics for small λ.
- Comparison with linear impact and transaction costs.
Verification

Theorem

If $\frac{\mu}{\gamma \sigma^2} \in (0, 1)$, then the optimal wealth turnover and equivalent safe rate are:

$$\hat{u}(y) = \left| \frac{q(y)}{(\alpha + 1) \lambda (1 - y q(y))} \right|^{1/\alpha} \text{sgn}(q(y))$$

$$\text{EsR}_{\gamma}(\hat{u}) = \beta$$

where $\beta \in (0, \frac{\mu^2}{2 \gamma \sigma^2})$ and $q : [0, 1] \mapsto \mathbb{R}$ are the unique pair that solves the ODE

$$- \hat{\beta} + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1 - y)(\mu - \gamma \sigma^2 y) q$$

$$+ \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|q|^{\alpha+1}}{(1 - y q)^{1/\alpha}} \lambda^{-1/\alpha} + \frac{\sigma^2}{2} y^2 (1 - y)^2 (q' + (1 - \gamma)q^2) = 0$$

$$q(0) = \lambda \frac{1}{\alpha+1} (\alpha + 1) \frac{1}{\alpha+1} \left(\frac{\alpha+1}{\alpha} \beta \right)^{\frac{\alpha}{\alpha+1}}, \quad \frac{\alpha}{(\alpha+1)^{1+1/\alpha}} \frac{|q(1)|^{\alpha+1}}{(1 - q(1))^{1/\alpha}} \lambda^{-1/\alpha} = \hat{\beta} - \mu + \gamma \frac{\sigma^2}{2}$$

- License to solve an ODE of Abel type. Function q and scalar β not explicit.
- Asymptotic expansion for λ near zero?
Theorem

If $\frac{\mu}{\gamma \sigma^2} \in (0, 1)$, then the optimal wealth turnover and equivalent safe rate are:

$$\hat{u}(y) = \left| \frac{q(y)}{(\alpha+1)\lambda(1-yq(y))} \right|^{1/\alpha} \text{sgn}(q(y))$$ \quad \text{EsR}_\gamma(\hat{u}) = \beta$$

where $\beta \in (0, \frac{\mu^2}{2\gamma \sigma^2})$ and $q : [0, 1] \mapsto \mathbb{R}$ are the unique pair that solves the ODE

$$-\hat{\beta} + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{\alpha}{(\alpha+1)^{1+1/\alpha}} \frac{|q|^{\alpha+1}}{(1-yq)^{1/\alpha}} \lambda^{-1/\alpha} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = 0$$

$q(0) = \lambda \frac{1}{\alpha+1} (\alpha + 1) \frac{1}{\alpha+1} \left(\frac{\alpha+1}{\alpha} \hat{\beta} \right)^{\frac{\alpha}{\alpha+1}}, \quad \frac{\alpha}{(\alpha+1)^{1+1/\alpha}} \frac{|q(1)|^{\alpha+1}}{(1-q(1))^{1/\alpha}} \lambda^{-1/\alpha} = \hat{\beta} - \mu + \gamma \frac{\sigma^2}{2}$

- License to solve an ODE of Abel type. Function q and scalar β not explicit.
- Asymptotic expansion for λ near zero?
Theorem

If \(\frac{\mu}{\gamma \sigma^2} \in (0, 1) \), then the optimal wealth turnover and equivalent safe rate are:

\[
\hat{u}(y) = \left| \frac{q(y)}{(\alpha+1)\lambda(1-yq(y))} \right|^{1/\alpha} \text{sgn}(q(y)) \quad \text{EsR}_{\gamma}(\hat{u}) = \beta
\]

where \(\beta \in (0, \frac{\mu^2}{2\gamma^2}) \) and \(q : [0, 1] \mapsto \mathbb{R} \) are the unique pair that solves the ODE

\[
-\hat{\beta} + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q
+ \frac{\alpha}{(\alpha+1)^{1+1/\alpha}} \frac{|q|^{\alpha+1}}{(1-yq)^{1/\alpha}} \lambda^{-1/\alpha} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = 0
\]

\[
q(0) = \lambda \left(\alpha + 1 \right) \frac{1}{\alpha+1} \left(\frac{\alpha+1}{\alpha} \hat{\beta} \right)^{\frac{\alpha}{\alpha+1}}, \quad \frac{\alpha}{(\alpha+1)^{1+1/\alpha}} \frac{|q(1)|^{\alpha+1}}{(1-q(1))^{1/\alpha}} \lambda^{-1/\alpha} = \hat{\beta} - \mu + \gamma \frac{\sigma^2}{2}
\]

- License to solve an ODE of Abel type. Function \(q \) and scalar \(\beta \) not explicit.
- Asymptotic expansion for \(\lambda \) near zero?
Asymptotics

Theorem

c_α and s_α unique pair that solves

\[
 s'(z) = z^2 - c - \alpha(\alpha + 1)^{-(1 + 1/\alpha)}|s(z)|^{1 + 1/\alpha} \quad \lim_{z \to \pm \infty} \frac{|s_\alpha(z)|}{|z|^{2\alpha/(\alpha + 1)}} = (\alpha + 1)^{-\alpha/(\alpha + 1)}
\]

Set $l_\alpha := \left[\left(\frac{\sigma^2}{2}\right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4\right]^\frac{\alpha + 1}{\alpha + 3}$, $A_\alpha = \left(\frac{2l_\alpha}{\gamma \sigma^2}\right)^{1/2}$, $B_\alpha = l_\alpha^{-\frac{\alpha}{\alpha + 1}}$.

Asymptotic optimal strategy and welfare:

\[
 \hat{u}(y) = -\left|\frac{s_\alpha\left(\lambda - \frac{1}{\alpha + 3}(y - \bar{Y})/A_\alpha\right)}{B_\alpha(\alpha + 1)}\right|^{1/\alpha} \text{sgn}(y - \bar{Y})
\]

\[
 \text{EsR}_\gamma(\hat{u}) = \frac{\mu^2}{2\gamma \sigma^2} - c_\alpha l_\alpha \lambda \frac{2}{\alpha + 3} + o(\lambda^{\frac{2}{\alpha + 3}})
\]

- Implications?
Asymptotics

Theorem

c_\alpha and s_\alpha unique pair that solves

\[s'(z) = z^2 - c - \alpha(\alpha + 1)^{-1 - 1/\alpha} |s(z)|^{1 + 1/\alpha} \lim_{z \to \pm \infty} \frac{|s_\alpha(z)|}{|z|^{2\alpha/(\alpha + 1)}} = (\alpha + 1)\alpha^{-\alpha/(\alpha + 1)} \]

Set \(l_\alpha := \left[\left(\frac{\sigma^2}{2} \right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4 \right]^{\frac{\alpha + 1}{\alpha + 3}} \), \(A_\alpha = \left(\frac{2l_\alpha}{\gamma \sigma^2} \right)^{1/2} \), \(B_\alpha = l_\alpha^{-\alpha/(\alpha + 1)} \).

Asymptotic optimal strategy and welfare:

\[\hat{u}(y) = -\left| \frac{s_\alpha(\lambda^{-1/\alpha^3} (y - \bar{Y})/A_\alpha)}{B_\alpha(\alpha + 1)} \right|^{1/\alpha} \sgn(y - \bar{Y}) \]

\[\text{EsR}_\gamma(\hat{u}) = \frac{\mu^2}{2\gamma \sigma^2} - c_\alpha l_\alpha \lambda^{2/\alpha^3} + o(\lambda^{2/\alpha^3}) \]

• Implications?
Trading Rate ($\mu = 8\%$, $\sigma = 16\%$, $\lambda = 0.1\%$, $\gamma = 5$)

Trading rate (vertical) against current risky weight (horizontal) for $\alpha = 1/8, 1/4, 1/2, 1$. Dashed lines are no-trade boundaries ($\alpha = 0$).
Trading Policy

- Trade towards \bar{Y}. Buy for $y < \bar{Y}$, sell for $y > \bar{Y}$.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade slower than with linear impact near target. Faster away from target. With linear impact trading rate proportional to displacement $|y - \bar{Y}|$.
- As $\alpha \downarrow 0$, trading rate:
 - vanishes inside no-trade region
 - explodes to $\pm \infty$ outside region.
Trading Policy

- Trade towards \bar{Y}. Buy for $y < \bar{Y}$, sell for $y > \bar{Y}$.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade slower than with linear impact near target. Faster away from target. With linear impact trading rate proportional to displacement $|y - \bar{Y}|$.
- As $\alpha \downarrow 0$, trading rate:
 vanishes inside no-trade region
 explodes to $\pm \infty$ outside region.
Trading Policy

- Trade towards \bar{Y}. Buy for $y < \bar{Y}$, sell for $y > \bar{Y}$.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade slower than with linear impact near target. Faster away from target. With linear impact trading rate proportional to displacement $|y - \bar{Y}|$.
- As $\alpha \downarrow 0$, trading rate:
 - vanishes inside no-trade region
 - explodes to $\pm \infty$ outside region.
Trading Policy

- Trade towards \bar{Y}. Buy for $y < \bar{Y}$, sell for $y > \bar{Y}$.
- Trade faster if market deeper. Higher volume in more liquid markets.
- Trade slower than with linear impact near target. Faster away from target. With linear impact trading rate proportional to displacement $|y - \bar{Y}|$.
- As $\alpha \downarrow 0$, trading rate:
 vanishes inside no-trade region
 explodes to $\pm \infty$ outside region.
Welfare

- Welfare cost of friction:

\[c_\alpha \left[\left(\frac{\sigma^2}{2} \right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4 \right]^{\frac{\alpha+1}{\alpha+3}} \lambda^{\frac{2}{\alpha+3}} \]

- Last factor accounts for effect of illiquidity parameter.
- Middle factor reflects volatility of portfolio weight.
- Constant \(c_\alpha \) depends on \(\alpha \) alone. No explicit expression for general \(\alpha \).
- Exponents \(2/(\alpha + 3) \) and \((\alpha + 1)/(\alpha + 3) \) sum to one. Geometric average.
Welfare

- Welfare cost of friction:

\[c_\alpha \left[\left(\frac{\sigma^2}{2} \right)^{3} \gamma \bar{Y}^4 (1 - \bar{Y})^4 \right]^{\frac{\alpha+1}{\alpha+3}} \lambda^{\frac{2}{\alpha+3}} \]

- Last factor accounts for effect of illiquidity parameter.
- Middle factor reflects volatility of portfolio weight.
- Constant \(c_\alpha \) depends on \(\alpha \) alone. No explicit expression for general \(\alpha \).
- Exponents \(2/(\alpha + 3) \) and \((\alpha + 1)/(\alpha + 3) \) sum to one. Geometric average.
Welfare

- Welfare cost of friction:
 \[c_\alpha \left[\left(\frac{\sigma^2}{2} \right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4 \right]^{\frac{\alpha+1}{\alpha+3}} \lambda^{\frac{2}{\alpha+3}} \]

- Last factor accounts for effect of illiquidity parameter.
- Middle factor reflects volatility of portfolio weight.
 - Constant \(c_\alpha \) depends on \(\alpha \) alone. No explicit expression for general \(\alpha \).
 - Exponents \(2/(\alpha + 3) \) and \((\alpha + 1)/(\alpha + 3) \) sum to one. Geometric average.
Welfare

- Welfare cost of friction:

\[c_\alpha \left[\left(\frac{\sigma^2}{2} \right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4 \right]^{\frac{\alpha+1}{\alpha+3}} \lambda^{\frac{2}{\alpha+3}} \]

- Last factor accounts for effect of illiquidity parameter.
- Middle factor reflects volatility of portfolio weight.
- Constant \(c_\alpha \) depends on \(\alpha \) alone. No explicit expression for general \(\alpha \).
- Exponents \(\frac{2}{\alpha+3} \) and \(\frac{\alpha+1}{\alpha+3} \) sum to one. Geometric average.
Welfare

- Welfare cost of friction:
 \[c_\alpha \left(\frac{\sigma^2}{2} \right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4 \lambda^{\frac{\alpha + 1}{\alpha + 3}} \]

- Last factor accounts for effect of illiquidity parameter.
- Middle factor reflects volatility of portfolio weight.
- Constant \(c_\alpha \) depends on \(\alpha \) alone. No explicit expression for general \(\alpha \).
- Exponents \(\frac{2}{\alpha + 3} \) and \(\frac{\alpha + 1}{\alpha + 3} \) sum to one. Geometric average.
Universal Constant c_α

c_α (vertical) against α (horizontal).
Proposition

Rescaled portfolio weight $Z_s^\lambda := \lambda^{-\frac{1}{\alpha+3}} \left(Y_{\lambda^2/(\alpha+3)} - \bar{Y} \right)$ converges weakly to the process Z_0^0, defined by

$$dZ_0^0 = v_\alpha(Z_0^0) ds + \bar{Y}(1 - \bar{Y})\sigma dW_s$$

$$v_\alpha(z) := -\left| \frac{B_\alpha s_\alpha(z/A_\alpha)}{(\alpha + 1)} \right|^{1/\alpha} \text{sgn}(z)$$

- “Nonlinear” stationary process. Ornstein-Uhlenbeck for linear impact.
- No explicit expression for drift – even asymptotically.
- Long-term distribution?
Portfolio Dynamics

Proposition

Rescaled portfolio weight $Z_s^\lambda := \lambda^{-\frac{1}{\alpha+3}}(Y^{2/(\alpha+3)}_s - \bar{Y})$ converges weakly to the process Z_s^0, defined by

$$dZ_s^0 = v_{\alpha}(Z_s^0)ds + \bar{Y}(1 - \bar{Y})\sigma dW_s$$

$$v_{\alpha}(z) := -\left|\frac{B_\alpha s_\alpha(z/A_\alpha)}{\alpha + 1}\right|^{1/\alpha}\text{sgn}(z)$$

- “Nonlinear” stationary process. Ornstein-Uhlenbeck for linear impact.
- No explicit expression for drift – even asymptotically.
- Long-term distribution?
Portfolio Dynamics

Proposition

Rescaled portfolio weight \(Z_s^\lambda := \lambda^{-\frac{1}{\alpha+3}} (Y_{\lambda^{2/(\alpha+3)}}s - \bar{Y}) \) converges weakly to the process \(Z_s^0 \), defined by

\[
dZ_s^0 = v_\alpha(Z_s^0) ds + \bar{Y}(1 - \bar{Y})\sigma dW_s
\]

\[
v_\alpha(z) := -\left| \frac{B_\alpha s_\alpha(z/A_\alpha)}{(\alpha + 1)} \right|^{1/\alpha} \text{sgn}(z)
\]

- “Nonlinear” stationary process. Ornstein-Uhlenbeck for linear impact.
- No explicit expression for drift – even asymptotically.
- Long-term distribution?
Portfolio Dynamics

Proposition

Rescaled portfolio weight $Z_s^\lambda := \lambda^{-\frac{1}{\alpha+3}} (Y^{\frac{2}{\alpha+3}}_s - \bar{Y})$ converges weakly to the process Z_0^s, defined by

$$dZ_0^s = v_\alpha(Z_0^s) ds + \bar{Y}(1 - \bar{Y})\sigma dW_s$$

$$v_\alpha(z) := -\left| \frac{B_\alpha s_\alpha(z/A_\alpha)}{(\alpha + 1)} \right|^{1/\alpha} \text{sgn}(z)$$

- “Nonlinear” stationary process. Ornstein-Uhlenbeck for linear impact.
- No explicit expression for drift – even asymptotically.
- Long-term distribution?
Long-term weight ($\mu = 8\%, \sigma = 16\%, \gamma = 5$)

Density (vertical) of the long-term density of rescaled risky weight Z^0 (horizontal) for $\alpha = 1/8, 1/4, 1/2, 1$. Dashed line is uniform density ($\alpha \rightarrow 0$).
Linear Impact ($\alpha = 1$)

- Solution to

$$s'(z) = z^2 - c - \alpha(\alpha + 1)^{-\left(1+1/\alpha\right)}|s(z)|^{1+1/\alpha}$$

is $c_1 = 2$ and $s_1(z) = -2z$.

- Optimal policy and welfare:

$$\hat{u}(y) = \sigma \sqrt{\frac{\gamma}{2\lambda}} (\bar{Y} - y) + O(1)$$

$$\text{EsR}_{\gamma}(\hat{u}) = \frac{\mu^2}{2\gamma \sigma^2} - \sigma^3 \sqrt{\frac{\gamma}{2}} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2} + O(\lambda)$$
Linear Impact ($\alpha = 1$)

- Solution to

\[s'(z) = z^2 - c - \alpha(\alpha + 1)^{-(1+1/\alpha)}|s(z)|^{1+1/\alpha} \]

is $c_1 = 2$ and $s_1(z) = -2z$.

- Optimal policy and welfare:

\[\hat{u}(y) = \sigma \sqrt{\frac{\gamma}{2 \lambda}} (\bar{Y} - y) + O(1) \]

\[\text{EsR}_\gamma(\hat{u}) = \frac{\mu^2}{2 \gamma \sigma^2} - \sigma^3 \sqrt{\frac{\gamma}{2}} \bar{Y}^2 (1 - \bar{Y})^2 \lambda^{1/2} + O(\lambda) \]
Transaction Costs \((\alpha \downarrow 0)\)

- Solution to

\[
s'(z) = z^2 - c - \alpha(\alpha + 1)^{-1+1/\alpha}|s(z)|^{1+1/\alpha}
\]

converges to \(c_0 = (3/2)^{2/3}\) and

\[
s_0(z) := \lim_{\alpha \to 0} s_\alpha(z) = \begin{cases}
1, & z \in (-\infty, -\sqrt{c_0}], \\
\frac{z^3}{3} - c_0z, & z \in (-\sqrt{c_0}, \sqrt{c_0}), \\
-1, & z \in [\sqrt{c_0}, +\infty).
\end{cases}
\]

- Optimal policy and welfare:

\[
Y_\pm = \frac{\mu}{\gamma \sigma^2} \pm \left(\frac{3}{4\gamma} \bar{Y}^2 (1 - \bar{Y})^2 \right)^{1/3} \varepsilon^{1/3}
\]

\[
\text{EsR}_\gamma(\hat{u}) = \frac{\mu^2}{2\gamma \sigma^2} - \frac{\gamma \sigma^2}{2} \left(\frac{3}{4\gamma} \bar{Y}^2 (1 - \bar{Y})^2 \right)^{2/3} \varepsilon^{2/3}
\]

- Compare to transaction cost model (Gerhold et al., 2014).
Transaction Costs ($\alpha \downarrow 0$)

- Solution to

\[s'(z) = z^2 - c - \alpha(\alpha + 1)^{-1+1/\alpha} |s(z)|^{1+1/\alpha} \]

converges to $c_0 = (3/2)^{2/3}$ and

\[s_0(z) := \lim_{\alpha \to 0} s_\alpha(z) = \begin{cases}
1, & z \in (-\infty, -\sqrt{c_0}], \\
z^3/3 - c_0 z, & z \in (-\sqrt{c_0}, \sqrt{c_0}), \\
-1, & z \in [\sqrt{c_0}, +\infty).
\end{cases} \]

- Optimal policy and welfare:

\[Y_\pm = \frac{\mu}{\gamma \sigma^2} \pm \left(\frac{3}{4\gamma} \bar{Y}^2 (1 - \bar{Y})^2 \right)^{1/3} \varepsilon^{1/3} \]

\[\text{EsR}_\gamma(\hat{u}) = \frac{\mu^2}{2\gamma \sigma^2} - \frac{\gamma \sigma^2}{2} \left(\frac{3}{4\gamma} \bar{Y}^2 (1 - \bar{Y})^2 \right)^{2/3} \varepsilon^{2/3} \]

- Compare to transaction cost model (Gerhold et al., 2014).
Transaction Costs \((\alpha \downarrow 0)\)

- Solution to

\[s'(z) = z^2 - c - \alpha(\alpha + 1)^{-1+1/\alpha}|s(z)|^{1+1/\alpha} \]

converges to \(c_0 = (3/2)^{2/3}\) and

\[s_0(z) := \lim_{\alpha \to 0} s_\alpha(z) = \begin{cases}
1, & z \in (-\infty, -\sqrt{c_0}], \\
2/3 - c_0z, & z \in (-\sqrt{c_0}, \sqrt{c_0}), \\
-1, & z \in [\sqrt{c_0}, +\infty).
\end{cases} \]

- Optimal policy and welfare:

\[Y = \frac{\mu}{\gamma \sigma^2} \pm \left(\frac{3}{4\gamma} \bar{Y}^2 (1 - \bar{Y})^2 \right)^{1/3} \]

\[\text{EsR}_\gamma(\hat{u}) = \frac{\mu^2}{2\gamma \sigma^2} - \frac{\gamma \sigma^2}{2} \left(\frac{3}{4\gamma} \bar{Y}^2 (1 - \bar{Y})^2 \right)^{2/3} \]

- Compare to transaction cost model (Gerhold et al., 2014).
Trading Volume and Welfare

- **Expected Trading Volume**

\[|ET| := \lim_{T \to \infty} \frac{1}{T} \int_0^T |\hat{u}_\lambda(Y_t)| \, dt = K_\alpha \left[\left(\frac{\sigma^2}{2} \right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4 \right]^{\frac{1}{\alpha+3}} \lambda^{-\frac{1}{\alpha+3}} + o(\lambda^{-\frac{1}{\alpha}}) \]

- Define welfare loss as decrease in equivalent safe rate due to friction:

\[\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma(\hat{u}) \]

- Zero loss if no trading necessary, i.e. \(\bar{Y} \in \{0, 1\} \).

- Universal relation:

\[\text{LoS} = N_\alpha \lambda |ET|^{1+\alpha} \]

 where constant \(N_\alpha \) depends only on \(\alpha \).

- Linear effect with transaction costs (price, not quantity).

 Superlinear effect with liquidity (price times quantity).
Trading Volume and Welfare

- Expected Trading Volume

\[|ET| := \lim_{T \to \infty} \frac{1}{T} \int_0^T |\hat{u}_\lambda(Y_t)| dt = K_\alpha \left[\left(\frac{\sigma^2}{2} \right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4 \right]^{\frac{1}{\alpha+3}} \lambda^{-\frac{1}{\alpha+3}} + o(\lambda^{-\frac{1}{\alpha+3}}) \]

- Define welfare loss as decrease in equivalent safe rate due to friction:

\[\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma(\hat{u}) \]

- Zero loss if no trading necessary, i.e. \(\bar{Y} \in \{0, 1\} \).
- Universal relation:

\[\text{LoS} = N_\alpha \lambda |ET|^{1+\alpha} \]

where constant \(N_\alpha \) depends only on \(\alpha \).
- Linear effect with transaction costs (price, not quantity).
- Superlinear effect with liquidity (price * times* quantity).
Trading Volume and Welfare

- **Expected Trading Volume**

\[|ET| := \lim_{T \to \infty} \frac{1}{T} \int_0^T |\hat{u}_\lambda(Y_t)| dt = K_\alpha \left[\left(\frac{\sigma^2}{2} \right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4 \right]^{\frac{1}{\alpha+3}} \lambda^{-\frac{1}{\alpha+3}} + o(\lambda^{-\frac{1}{\alpha+3}}) \]

- Define welfare loss as decrease in equivalent safe rate due to friction:

\[\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma(\hat{u}) \]

- Zero loss if no trading necessary, i.e. \(\bar{Y} \in \{0, 1\} \).

- Universal relation:

\[\text{LoS} = N_\alpha \lambda |ET|^{1+\alpha} \]

where constant \(N_\alpha \) depends only on \(\alpha \).

- Linear effect with transaction costs (price, not quantity). Superlinear effect with liquidity (price *times* quantity).
Trading Volume and Welfare

- **Expected Trading Volume**

\[
|ET| := \lim_{T \to \infty} \frac{1}{T} \int_0^T |\hat{u}_\lambda(Y_t)| \, dt = K_\alpha \left[\left(\frac{\sigma^2}{2}\right)^3 \gamma \tilde{Y}^4 (1 - \tilde{Y})^4 \right]^{\frac{1}{\alpha+3}} \lambda^{-\frac{1}{\alpha+3}} + o(\lambda^{-\frac{1}{\alpha+3}})
\]

- Define welfare loss as decrease in equivalent safe rate due to friction:

\[
\text{LoS} = \frac{\mu^2}{2\gamma \sigma^2} - \text{EsR}_\gamma(\hat{u})
\]

- Zero loss if no trading necessary, i.e. \(\tilde{Y} \in \{0, 1\} \).

- Universal relation:

\[
\text{LoS} = N_\alpha \lambda |ET|^{1+\alpha}
\]

where constant \(N_\alpha \) depends only on \(\alpha \).

- Linear effect with transaction costs (price, not quantity).
- Superlinear effect with liquidity (price times quantity).
Trading Volume and Welfare

- **Expected Trading Volume**

\[
|ET| := \lim_{T \to \infty} \frac{1}{T} \int_0^T |\hat{u}_\lambda(Y_t)| \, dt = K_\alpha \left[\left(\frac{\sigma^2}{2} \right)^3 \gamma \bar{Y}^4 (1 - \bar{Y})^4 \right]^{\frac{1}{\alpha+3}} \lambda^{-\frac{1}{\alpha+3}} + O(\lambda^{-\frac{1}{\alpha+3}})
\]

- Define welfare loss as decrease in equivalent safe rate due to friction:

\[
\text{LoS} = \frac{\mu^2}{2\gamma\sigma^2} - \text{EsR}_\gamma(\hat{u})
\]

- Zero loss if no trading necessary, i.e. \(\bar{Y} \in \{0, 1\} \).

- Universal relation:

\[
\text{LoS} = N_\alpha \lambda |ET|^{1+\alpha}
\]

 where constant \(N_\alpha \) depends only on \(\alpha \).

- Linear effect with transaction costs (price, not quantity). Superlinear effect with liquidity (price *times* quantity).
Hacking the Model ($\alpha > 1$)

- Empirically improbable. Theoretically possible.
- Trading rates below one cheap. Above one expensive.
- As $\alpha \uparrow \infty$, trade at rate close to one. Compare to Longstaff (2001).
Hacking the Model ($\alpha > 1$)

- Empirically improbable. Theoretically possible.
- Trading rates below one cheap. Above one expensive.
- As $\alpha \uparrow \infty$, trade at rate close to one. Compare to Longstaff (2001).
Hacking the Model \((\alpha > 1)\)

- Empirically improbable. Theoretically possible.
- Trading rates below one cheap. Above one expensive.
- As \(\alpha \uparrow \infty\), trade at rate close to one. Compare to Longstaff (2001).
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If $\frac{\mu}{\gamma \sigma^2} \leq 0$, then $Y_t = 0$ and $\hat{u} = 0$ for all t optimal. Equivalent safe rate zero.

If $\frac{\mu}{\gamma \sigma^2} \geq 1$, then $Y_t = 1$ and $\hat{u} = 0$ for all t optimal. Equivalent safe rate $\mu - \frac{\gamma}{2} \sigma^2$.

• If Merton investor shorts, keep all wealth in safe asset, but do not short.
• If Merton investor levers, keep all wealth in risky asset, but do not lever.
• Portfolio choice for a risk-neutral investor!
• Corner solutions. But without constraints?
• Intuition: the constraint is that wealth must stay positive.
• Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
• Block trading unfeasible with price impact proportional to turnover. Even in the limit.
• Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{\mu} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{\mu} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
 - Intuition: the constraint is that wealth must stay positive.
 - Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
 - Block trading unfeasible with price impact proportional to turnover. Even in the limit.
 - Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
 - Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Neither a Borrower nor a Shorter Be

Theorem

If \(\frac{\mu}{\gamma \sigma^2} \leq 0 \), then \(Y_t = 0 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate zero.

If \(\frac{\mu}{\gamma \sigma^2} \geq 1 \), then \(Y_t = 1 \) and \(\hat{u} = 0 \) for all \(t \) optimal. Equivalent safe rate \(\mu - \frac{\gamma}{2} \sigma^2 \).

- If Merton investor shorts, keep all wealth in safe asset, but do not short.
- If Merton investor levers, keep all wealth in risky asset, but do not lever.
- Portfolio choice for a risk-neutral investor!
- Corner solutions. But without constraints?
- Intuition: the constraint is that wealth must stay positive.
- Positive wealth does not preclude borrowing with block trading, as in frictionless models and with transaction costs.
- Block trading unfeasible with price impact proportional to turnover. Even in the limit.
- Phenomenon disappears with exponential utility.
Control Argument

- Value function v depends on (1) current wealth X_t, (2) current risky weight Y_t, and (3) calendar time t.

$$
dv(t, X_t, Y_t) = v_t dt + v_x dX_t + v_y dY_t + \frac{v_{xx}}{2} d\langle X \rangle_t + \frac{v_{yy}}{2} d\langle Y \rangle_t + v_{xy} d\langle X, Y \rangle_t
$$

$$
= v_t dt + v_x (\mu X_t Y_t - \lambda X_t |u_t|^{\alpha+1}) dt + v_x X_t Y_t \sigma dW_t
+ v_y (Y_t (1 - Y_t)(\mu - Y_t \sigma^2) + u_t + \lambda Y_t |u_t|^{\alpha+1}) dt + v_y Y_t (1 - Y_t) \sigma dW_t
+ \left(\frac{\sigma^2}{2} v_{xx} X_t^2 Y_t^2 + \frac{\sigma^2}{2} v_{yy} Y_t^2 (1 - Y_t)^2 + \sigma^2 v_{xy} X_t Y_t^2 (1 - Y_t) \right) dt,
$$

- Maximize drift over u, and set result equal to zero:

$$
n_t + y (1 - y)(\mu - \sigma^2 y) v_y + \mu x y v_x + \frac{\sigma^2 y^2}{2} (x^2 v_{xx} + (1 - y)^2 v_{yy} + 2x(1 - y) v_{xy})
+ \max_u \left(-\lambda x |u|^{\alpha+1} v_x + v_y (u + \lambda y |u|^{\alpha+1}) \right) = 0.
$$
Control Argument

• Value function v depends on (1) current wealth X_t, (2) current risky weight Y_t, and (3) calendar time t.

$$dv(t, X_t, Y_t) = v_t dt + v_x dX_t + v_y dY_t + \frac{v_{xx}}{2} d\langle X \rangle_t + \frac{v_{yy}}{2} d\langle Y \rangle_t + v_{xy} d\langle X, Y \rangle_t$$

$$= v_t dt + v_x (\mu X_t Y_t - \lambda X_t |u_t|^{\alpha+1}) dt + v_x X_t Y_t \sigma dW_t + v_y (Y_t (1 - Y_t) (\mu - Y_t \sigma^2) + u_t + \lambda Y_t |u_t|^{\alpha+1}) dt + v_y Y_t (1 - Y_t) \sigma dW_t$$

$$+ \left(\frac{\sigma^2}{2} v_{xx} X_t^2 Y_t^2 + \frac{\sigma^2}{2} v_{yy} Y_t^2 (1 - Y_t)^2 + \sigma^2 v_{xy} X_t Y_t^2 (1 - Y_t) \right) dt,$$

• Maximize drift over u, and set result equal to zero:

$$v_t + y (1 - y) (\mu - \sigma^2 y) v_y + \mu x y v_x + \frac{\sigma^2 y^2}{2} (x^2 v_{xx} + (1 - y)^2 v_{yy} + 2x (1 - y) v_{xy})$$

$$+ \max_u (-\lambda x |u|^{\alpha+1} v_x + v_y (u + \lambda y |u|^{\alpha+1})) = 0.$$
Homogeneity and Long-Run

- Homogeneity in wealth \(v(t, x, y) = x^{1-\gamma} v(t, 1, y) \).
- Guess long-term growth at equivalent safe rate \(\beta \), to be found.
- Substitution \(v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int_y^y q(z)dz)} \) reduces HJB equation

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + q y (1-y)(\mu - \gamma \sigma^2 y) + \frac{\sigma^2}{2} y^2(1-y)^2 (q' + (1-\gamma)q^2)
+ \max_u \left(-\lambda |u|^{\alpha+1} + (u + \lambda y |u|^{\alpha+1})q \right) = 0,
\]

- Maximum for \(|u(y)| = \left| \frac{q(y)}{(\alpha+1)\lambda(1-yq(y))} \right|^{1/\alpha} \).
- Plugging yields

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q
+ \frac{\alpha}{(\alpha+1)^{1+1/\alpha}} |q|^{\frac{\alpha+1}{\alpha}} \lambda^{1-1/\alpha} + \frac{\sigma^2}{2} y^2(1-y)^2 (q' + (1-\gamma)q^2) = 0.
\]

- \(\beta = \frac{\mu^2}{2\gamma \sigma^2} \), \(q = 0 \), \(y = \frac{\mu}{\gamma \sigma^2} \) corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth $v(t, x, y) = x^{1-\gamma} v(t, 1, y)$.
- Guess long-term growth at equivalent safe rate β, to be found.

Substitution $v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int^y q(z)dz)}$ reduces HJB equation

$$
- \beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + qy(1-y)(\mu - \gamma \sigma^2 y) + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) \\
+ \max_u (-\lambda |u|^{\alpha+1} + (u + \lambda y |u|^{\alpha+1})q) = 0,
$$

- Maximum for $|u(y)| = \left| \frac{q(y)}{(\alpha+1)\lambda(1-yq)} \right|^{1/\alpha}$.
- Plugging yields

$$
- \beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q \\
+ \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|q|^{\alpha+1}}{(1-yq)^{1/\alpha}} \lambda^{-1/\alpha} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = 0.
$$

- $\beta = \frac{\mu^2}{2\gamma \sigma^2}$, $q = 0$, $y = \frac{\mu}{\gamma \sigma^2}$ corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth \(v(t, x, y) = x^{1-\gamma} v(t, 1, y) \).
- Guess long-term growth at equivalent safe rate \(\beta \), to be found.
- Substitution \(v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int^y q(z)dz)} \) reduces HJB equation

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + qy(1-y)(\mu - \gamma \sigma^2 y) + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) + \max_u \left(-\lambda |u|^\alpha \right. + \left. (u + \lambda y|u|^\alpha)q \right) = 0,
\]

- Maximum for \(|u(y)| = \left| \frac{q(y)}{p}(\alpha+1)\frac{1}{\lambda(1-yq(y))} \right|^{1/\alpha} \).
- Plugging yields

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|q|^\alpha}{(1-yq)^{1/\alpha}} \lambda^{-1/\alpha} + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) = 0.
\]

- \(\beta = \frac{\mu^2}{2\gamma \sigma^2}, q = 0, y = \frac{\mu}{\gamma \sigma^2} \) corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth $v(t, x, y) = x^{1-\gamma} v(t, 1, y)$.
- Guess long-term growth at equivalent safe rate β, to be found.
- Substitution $v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int_y q(z)dz)}$ reduces HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + qy(1-y)(\mu - \gamma \sigma^2 y) + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2)$$

$$+ \max_u (-\lambda |u|^{\alpha+1} + (u + \lambda y|u|^{\alpha+1})q) = 0,$$

- Maximum for $|u(y)| = \left| \frac{q(y)}{(\alpha+1)\lambda(1-yq(y))} \right|^{1/\alpha}$.
- Plugging yields

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q$$

$$+ \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|q|^{\alpha+1}_{\alpha}}{(1-yq)^{1/\alpha}} \lambda^{-1/\alpha} + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) = 0.$$

- $\beta = \frac{\mu^2}{2\gamma\sigma^2}$, $q = 0$, $y = \frac{\mu}{\gamma\sigma^2}$ corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth \(v(t, x, y) = x^{1-\gamma} v(t, 1, y) \).
- Guess long-term growth at equivalent safe rate \(\beta \), to be found.
- Substitution \(v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t) + \int_y^y q(z)dz)} \) reduces HJB equation

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + q y (1-y)(\mu - \gamma \sigma^2 y) + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) \\
+ \max_u (-\lambda |u|^{\alpha+1} + (u + \lambda y|u|^{\alpha+1})q) = 0,
\]

- Maximum for \(|u(y)| = \left|\frac{q(y)}{(\alpha+1)\lambda(1-yq(y))}\right|^{1/\alpha} \).
- Plugging yields

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y (1-y)(\mu - \gamma \sigma^2 y) q \\
+ \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \left|q\right|^{(\alpha+1)/\alpha} \lambda^{-1/\alpha} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = 0.
\]

- \(\beta = \frac{\mu^2}{2\gamma\sigma^2}, \ q = 0, \ y = \frac{\mu}{\gamma\sigma^2} \) corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth $v(t, x, y) = x^{1-\gamma} v(t, 1, y)$.
- Guess long-term growth at equivalent safe rate β, to be found.
- Substitution $v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int^y q(z)dz)}$ reduces HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + qy(1-y)(\mu - \gamma\sigma^2 y) + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) + \max_u (-\lambda |u|^{\alpha+1} + (u + \lambda y |u|^{\alpha+1})q) = 0,$$

- Maximum for $|u(y)| = \left| \frac{q(y)}{(\alpha+1)\lambda(1-yq(y))} \right|^{1/\alpha}$.
- Plugging yields

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma\sigma^2 y)q + \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|q|^{\alpha+1}}{(1-yq)^{1/\alpha}} \lambda^{-1/\alpha} + \frac{\sigma^2}{2} y^2(1-y)^2(q' + (1-\gamma)q^2) = 0.$$

- $\beta = \frac{\mu^2}{2\gamma\sigma^2}$, $q = 0$, $y = \frac{\mu}{\gamma\sigma^2}$ corresponds to Merton solution.
- Classical model as a singular limit.
Homogeneity and Long-Run

- Homogeneity in wealth \(v(t, x, y) = x^{1-\gamma} v(t, 1, y) \).
- Guess long-term growth at equivalent safe rate \(\beta \), to be found.
- Substitution \(v(t, x, y) = \frac{x^{1-\gamma}}{1-\gamma} e^{(1-\gamma)(\beta(T-t)+\int^y q(z)dz)} \) reduces HJB equation

\[-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + qy(1 - y)(\mu - \gamma \sigma^2 y) + \frac{\sigma^2}{2} y^2 (1 - y)^2 (q' + (1 - \gamma)q^2) + \max_u \left(-\lambda |u|^{\alpha+1} + (u + \lambda y |u|^{\alpha+1}) q\right) = 0,\]

- Maximum for \(|u(y)| = \left| \frac{q(y)}{(\alpha+1)\lambda(1-yq(y))} \right|^{1/\alpha} \).
- Plugging yields

\[-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1 - y)(\mu - \gamma \sigma^2 y) q + \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|q|^{\alpha+1}}{(1-yq)^{1/\alpha}} \lambda^{-1/\alpha} + \frac{\sigma^2}{2} y^2 (1 - y)^2 (q' + (1 - \gamma)q^2) = 0.\]

- \(\beta = \frac{\mu^2}{2\gamma \sigma^2}, q = 0, y = \frac{\mu}{\gamma \sigma^2} \) corresponds to Merton solution.
- Classical model as a singular limit.
Asymptotics away from Target

- Guess that \(q(y) \to 0 \) as \(\lambda \downarrow 0 \). Limit equation:

\[
\frac{\gamma \sigma^2}{2} (\bar{Y} - y)^2 = \lim_{\lambda \to 0} \frac{\alpha}{\alpha + 1} (\alpha + 1)^{-1/\alpha} |q|^{\frac{\alpha + 1}{\alpha}} \lambda^{-1/\alpha}.
\]

- Expand equivalent safe rate as \(\beta = \frac{\mu^2}{2\gamma \sigma^2} - c(\lambda) \)

- Function \(c \) represents welfare impact of illiquidity.

- Plug expansion in HJB equation

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y) (\mu - \gamma \sigma^2 y) q + \frac{\sigma^2}{4\lambda (1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma) q^2) =
\]

- which suggests asymptotic approximation

\[
q^{(1)}(y) = \lambda^{\frac{1}{\alpha+1}} (\alpha + 1)^{\frac{1}{\alpha+1}} \left(\frac{\alpha + 1}{\alpha} \frac{\gamma \sigma^2}{2} \right)^{\frac{\alpha}{\alpha+1}} |\bar{Y} - y|^{\frac{2\alpha}{\alpha+1}} \text{sgn}(\bar{Y} - y).
\]

- Derivative explodes at target \(\bar{Y} \). Need different expansion.
Asymptotics away from Target

• Guess that $q(y) \to 0$ as $\lambda \downarrow 0$. Limit equation:

$$\frac{\gamma \sigma^2}{2} (\bar{Y} - y)^2 = \lim_{\lambda \to 0} \frac{\alpha}{\alpha + 1} (\alpha + 1)^{-1/\alpha} |q|^{\frac{\alpha + 1}{\alpha}} \lambda^{-1/\alpha}.$$

• Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma \sigma^2} - c(\lambda)$

• Function c represents welfare impact of illiquidity.

• Plug expansion in HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{\sigma^2}{4\lambda(1-yq)} \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) =$$

• which suggests asymptotic approximation

$$q^{(1)}(y) = \lambda \frac{1}{\alpha+1} (\alpha + 1) \frac{1}{\alpha+1} \left(\frac{\alpha + 1}{\alpha} \frac{\gamma \sigma^2}{2} \right)^{\frac{\alpha}{\alpha+1}} |\bar{Y} - y|^{\frac{2\alpha}{\alpha+1}} \text{sgn}(\bar{Y} - y).$$

• Derivative explodes at target \bar{Y}. Need different expansion.
Asymptotics away from Target

- Guess that $q(y) \to 0$ as $\lambda \downarrow 0$. Limit equation:

$$\frac{\gamma \sigma^2}{2} (\bar{Y} - y)^2 = \lim_{\lambda \to 0} \frac{\alpha}{\alpha + 1} (\alpha + 1)^{-1/\alpha} |q|^{\frac{\alpha+1}{\alpha}} \lambda^{-1/\alpha}.$$

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma \sigma^2} - c(\lambda)$
- Function c represents welfare impact of illiquidity.
- Plug expansion in HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{\sigma^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) =$$

- which suggests asymptotic approximation

$$q^{(1)}(y) = \lambda \frac{1}{\alpha+1} (\alpha + 1) \frac{1}{\alpha+1} \left(\frac{\alpha + 1}{\alpha} \frac{\gamma \sigma^2}{2} \right)^{\frac{\alpha}{\alpha+1}} |\bar{Y} - y|^{\frac{2\alpha}{\alpha+1}} \text{sgn}(\bar{Y} - y).$$

- Derivative explodes at target \bar{Y}. Need different expansion.
Asymptotics away from Target

- Guess that $q(y) \to 0$ as $\lambda \downarrow 0$. Limit equation:

$$\frac{\gamma \sigma^2}{2} (\bar{Y} - y)^2 = \lim_{\lambda \to 0} \frac{\alpha}{\alpha + 1} (\alpha + 1)^{-1/\alpha} |q|^\frac{\alpha+1}{\alpha} \lambda^{-1/\alpha}.$$

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2 \gamma \sigma^2} - c(\lambda)$
- Function c represents welfare impact of illiquidity.
- Plug expansion in HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{\sigma^2}{4\lambda (1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) =$$

- which suggests asymptotic approximation

$$q^{(1)}(y) = \lambda \frac{1}{\alpha+1} (\alpha + 1)^{\frac{\alpha+1}{\alpha}} \left(\frac{\alpha + 1}{\alpha} \frac{\gamma \sigma^2}{2} \right)^{\frac{\alpha}{\alpha+1}} |\bar{Y} - y|^{\frac{2\alpha}{\alpha+1}} \text{sgn}(\bar{Y} - y).$$

- Derivative explodes at target \bar{Y}. Need different expansion.
Asymptotics away from Target

• Guess that \(q(y) \to 0 \) as \(\lambda \downarrow 0 \). Limit equation:

\[
\frac{\gamma \sigma^2}{2} (\bar{Y} - y)^2 = \lim_{\lambda \to 0} \frac{\alpha}{\alpha + 1} (\alpha + 1)^{-1/\alpha} |q|^{\frac{\alpha+1}{\alpha}} \lambda^{-1/\alpha}.
\]

• Expand equivalent safe rate as \(\beta = \frac{\mu^2}{2\gamma\sigma^2} - c(\lambda) \)

• Function \(c \) represents welfare impact of illiquidity.

• Plug expansion in HJB equation

\[
-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{\sigma^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) = \]

• which suggests asymptotic approximation

\[
q^{(1)}(y) = \lambda \frac{1}{\alpha+1} (\alpha + 1) \frac{1}{\alpha+1} \left(\frac{\alpha + 1}{\alpha} \frac{\gamma \sigma^2}{2} \right)^{\frac{\alpha}{\alpha+1}} |\bar{Y} - y|^\frac{2\alpha}{\alpha+1} \text{sgn}(\bar{Y} - y).
\]

• Derivative explodes at target \(\bar{Y} \). Need different expansion.
Asymptotics away from Target

- Guess that $q(y) \to 0$ as $\lambda \downarrow 0$. Limit equation:

$$\frac{\gamma \sigma^2}{2} (\bar{Y} - y)^2 = \lim_{\lambda \to 0} \frac{\alpha}{\alpha + 1} (\alpha + 1)^{-1/\alpha} |q|^{\frac{\alpha+1}{\alpha}} \lambda^{-1/\alpha}.$$

- Expand equivalent safe rate as $\beta = \frac{\mu^2}{2\gamma \sigma^2} - c(\lambda)$
- Function c represents welfare impact of illiquidity.
- Plug expansion in HJB equation

$$-\beta + \mu y - \gamma \frac{\sigma^2}{2} y^2 + y(1-y)(\mu - \gamma \sigma^2 y)q + \frac{\sigma^2}{4\lambda(1-yq)} + \frac{\sigma^2}{2} y^2 (1-y)^2 (q' + (1-\gamma)q^2) =$$

- which suggests asymptotic approximation

$$q^{(1)}(y) = \lambda \frac{1}{\alpha+1} (\alpha + 1)^{\frac{1}{\alpha+1}} \left(\frac{\alpha + 1}{\alpha} \frac{\gamma \sigma^2}{2} \right)^{\frac{\alpha}{\alpha+1}} |\bar{Y} - y|^{\frac{2\alpha}{\alpha+1}} \text{sgn}(\bar{Y} - y).$$

- Derivative explodes at target \bar{Y}. Need different expansion.
Asymptotics close to Target

- Zoom in around target weight \bar{Y}.
- Guess $c(\lambda) := \frac{\mu^2}{2\gamma\sigma^2} - \beta = \bar{c}\lambda^{\frac{2}{\alpha+3}}$. Set $y = \bar{Y} + \lambda^{\frac{1}{\alpha+3}}z$, $r_\lambda(z) = q_\lambda(y)\lambda^{-\frac{3}{\alpha+3}}$
- HJB equation becomes

$$-rac{\gamma\sigma^2}{2} z^2 \lambda^{\frac{2}{\alpha+3}} + \bar{c}\lambda^{\frac{2}{\alpha+3}} - \gamma\sigma^2 y (1 - y) z \lambda^{\frac{4}{\alpha+3}} r_\lambda$$

$$+ \frac{\sigma^2}{2} y^2 (1 - y)^2 (r_\lambda' \lambda^{\frac{2}{\alpha+3}} + (1 - \gamma) r_\lambda^2 \lambda^{\frac{6}{\alpha+3}})$$

$$+ \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|r_\lambda|^{\frac{\alpha+1}{\alpha}}}{(1 - yr_\lambda \lambda^{\frac{3}{\alpha+3}})^{1/\alpha}} \lambda^{\frac{2}{\alpha+3}} = 0$$

- Divide by $\lambda^{\frac{2}{\alpha+3}}$ and take limit $\lambda \downarrow 0$. $r_0(z) := \lim_{\lambda \to 0} r_\lambda(z)$ satisfies

$$-\frac{\gamma\sigma^2}{2} z^2 + \bar{c} + \frac{\sigma^2}{2} \bar{Y}^2 (1 - \bar{Y})^2 r_0' + \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} |r_0|^{\frac{\alpha+1}{\alpha}} = 0$$

- Absorb coefficients into definition of $s_\alpha(z)$, and only α remains in ODE.
Asymptotics close to Target

- Zoom in around target weight \bar{Y}.
- Guess $c(\lambda) := \frac{\mu^2}{2\gamma\sigma^2} - \beta = \bar{c} \lambda^{\frac{2}{\alpha+3}}$. Set $y = \bar{Y} + \lambda^{\frac{1}{\alpha+3}} z$, $r_\lambda(z) = q_\lambda(y) \lambda^{\frac{-3}{\alpha+3}}$.
- HJB equation becomes

$$-\frac{\gamma\sigma^2}{2} z^2 \lambda^{\frac{2}{\alpha+3}} + \bar{c} \lambda^{\frac{2}{\alpha+3}} - \gamma\sigma^2 y (1 - y) z \lambda^{\frac{4}{\alpha+3}} r_\lambda$$

$$+ \frac{\sigma^2}{2} y^2 (1 - y)^2 (r'_\lambda \lambda^{\frac{2}{\alpha+3}} + (1 - \gamma) r^2_\lambda \lambda^{\frac{6}{\alpha+3}})$$

$$+ \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|r_\lambda|^{\frac{\alpha+1}{\alpha}}}{(1 - y r_\lambda \lambda^{\frac{3}{\alpha+3}})^{1/\alpha}} \lambda^{\frac{2}{\alpha+3}} = 0$$

- Divide by $\lambda^{\frac{2}{\alpha+3}}$ and take limit $\lambda \downarrow 0$. $r_0(z) := \lim_{\lambda \to 0} r_\lambda(z)$ satisfies

$$-\frac{\gamma\sigma^2}{2} z^2 + \bar{c} + \frac{\sigma^2}{2} \bar{Y}^2 (1 - \bar{Y})^2 r'_0 + \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} |r_0|^{\frac{\alpha+1}{\alpha}} = 0$$

- Absorb coefficients into definition of $s_\alpha(z)$, and only α remains in ODE.
Asymptotics close to Target

- Zoom in around target weight \bar{Y}.
- Guess $c(\lambda) := \frac{\mu^2}{2\gamma\sigma^2} - \beta = \tilde{c}\lambda^{\frac{2}{\alpha+3}}$. Set $y = \bar{Y} + \lambda^{\frac{1}{\alpha+3}}z$, $r_\lambda(z) = q_\lambda(y)\lambda^{-\frac{3}{\alpha+3}}$.
- HJB equation becomes

$$-\frac{\gamma\sigma^2}{2}z^2\lambda^{\frac{2}{\alpha+3}} + \tilde{c}\lambda^{\frac{2}{\alpha+3}} - \gamma\sigma^2y(1 - y)z\lambda^{\frac{4}{\alpha+3}}r_\lambda$$
$$+ \frac{\sigma^2}{2}y^2(1 - y)^2(r'_\lambda\lambda^{\frac{2}{\alpha+3}} + (1 - \gamma)r^2_\lambda\lambda^{\frac{6}{\alpha+3}})$$
$$+ \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|r_\lambda|^{\frac{\alpha+1}{\alpha}}}{(1 - yr_\lambda\lambda^{\frac{3}{\alpha+3}})^{1/\alpha}} \lambda^{\frac{2}{\alpha+3}} = 0$$

- Divide by $\lambda^{\frac{2}{\alpha+3}}$ and take limit $\lambda \downarrow 0$. $r_0(z) := \lim_{\lambda \to 0} r_\lambda(z)$ satisfies

$$-\frac{\gamma\sigma^2}{2}z^2 + \tilde{c} + \frac{\sigma^2}{2}\bar{Y}^2(1 - \bar{Y})^2r'_0 + \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} |r_0|^{\frac{\alpha+1}{\alpha}} = 0$$

- Absorb coefficients into definition of $s_\alpha(z)$, and only α remains in ODE.
Asymptotics close to Target

- Zoom in around target weight \bar{Y}.
- Guess $c(\lambda) := \frac{\mu^2}{2\gamma \sigma^2} - \beta = \bar{c} \lambda^{\frac{2}{\alpha+3}}$. Set $y = \bar{Y} + \lambda^{\frac{1}{\alpha+3}} z$, $r_\lambda(z) = q_\lambda(y) \lambda^{-\frac{3}{\alpha+3}}$.
- HJB equation becomes

\[- \frac{\gamma \sigma^2}{2} z^2 \lambda^{\frac{2}{\alpha+3}} + \bar{c} \lambda^{\frac{2}{\alpha+3}} - \gamma \sigma^2 y(1 - y) z \lambda^{\frac{4}{\alpha+3}} r_\lambda + \frac{\sigma^2}{2} y^2 (1 - y)^2 (r'_\lambda \lambda^{\frac{2}{\alpha+3}} + (1 - \gamma) r^2_\lambda \lambda^{\frac{6}{\alpha+3}}) + \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|r_\lambda|^{\frac{\alpha+1}{\alpha}}}{(1 - yr_\lambda \lambda^{\frac{3}{\alpha+3}})^{1/\alpha}} \lambda^{\frac{2}{\alpha+3}} = 0\]

- Divide by $\lambda^{\frac{2}{\alpha+3}}$ and take limit $\lambda \downarrow 0$. $r_0(z) := \lim_{\lambda \to 0} r_\lambda(z)$ satisfies

\[- \frac{\gamma \sigma^2}{2} z^2 + \bar{c} + \frac{\sigma^2}{2} \bar{Y}^2 (1 - \bar{Y})^2 r'_0 + \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} |r_0|^{\frac{\alpha+1}{\alpha}} = 0\]

- Absorb coefficients into definition of $s_\alpha(z)$, and only α remains in ODE.
Asymptotics close to Target

- Zoom in around target weight \bar{Y}.
- Guess $c(\lambda) := \frac{\mu^2}{2\gamma \sigma^2} - \beta = \bar{c} \lambda^{\frac{2}{\alpha+3}}$. Set $y = \bar{Y} + \lambda^{\frac{1}{\alpha+3}} z$, $r_\lambda(z) = q_\lambda(y) \lambda^{-\frac{3}{\alpha+3}}$.
- HJB equation becomes

$$
- \frac{\gamma \sigma^2}{2} z^2 \lambda^{\frac{2}{\alpha+3}} + \bar{c} \lambda^{\frac{2}{\alpha+3}} - \gamma \sigma^2 y (1 - y) z \lambda^{\frac{4}{\alpha+3}} r_\lambda
+ \frac{\sigma^2}{2} y^2 (1 - y)^2 (r_\lambda' \lambda^{\frac{2}{\alpha+3}} + (1 - \gamma) r_\lambda^2 \lambda^{\frac{6}{\alpha+3}})
+ \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} \frac{|r_\lambda|^{\frac{\alpha+1}{\alpha}}}{(1 - yr_\lambda \lambda^{\frac{3}{\alpha+3}})^{1/\alpha}} \lambda^{\frac{2}{\alpha+3}} = 0
$$

- Divide by $\lambda^{\frac{2}{\alpha+3}}$ and take limit $\lambda \downarrow 0$. $r_0(z) := \lim_{\lambda \to 0} r_\lambda(z)$ satisfies

$$
- \frac{\gamma \sigma^2}{2} z^2 + \bar{c} + \frac{\sigma^2}{2} \bar{Y}^2 (1 - \bar{Y})^2 r_0' + \frac{\alpha}{(\alpha + 1)^{1+1/\alpha}} |r_0|^{\frac{\alpha+1}{\alpha}} = 0
$$

- Absorb coefficients into definition of $s_\alpha(z)$, and only α remains in ODE.
Issues

• How to make argument rigorous?
• Heuristics yield ODE, but no boundary conditions!
• Relation between ODE and optimization problem?
Issues

- How to make argument rigorous?
- Heuristics yield ODE, but no boundary conditions!
- Relation between ODE and optimization problem?
Issues

- How to make argument rigorous?
- Heuristics yield ODE, but no boundary conditions!
- Relation between ODE and optimization problem?
Verification

Lemma

Let q solve the HJB equation, and define $Q(y) = \int_{y}^{0} q(z)dz$. There exists a probability \hat{P}, equivalent to P, such that the terminal wealth X_T of any admissible strategy satisfies:

$$E[X_T^{1-\gamma}]^{1\gamma} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{1\gamma},$$

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any β, for corresponding Q.
- Idea: pick largest β^* to make Q disappear in the long run.
- A priori bounds:

$$\beta^* < \frac{\mu^2}{2\gamma\sigma^2}$$ \hspace{1cm} \text{(frictionless solution)}$$

$$\max\left(0, \mu - \frac{\gamma}{2}\sigma^2\right) < \beta^*$$ \hspace{1cm} \text{(all in safe or risky asset)}
Verification

Lemma

Let q solve the HJB equation, and define $Q(y) = \int_y^\infty q(z)dz$. There exists a probability \hat{P}, equivalent to P, such that the terminal wealth X_T of any admissible strategy satisfies:

$$E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}},$$

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any β, for corresponding Q.
- Idea: pick largest β^* to make Q disappear in the long run.
- A priori bounds:

$$\beta^* < \frac{\mu^2}{2\gamma \sigma^2}$$
(frictionless solution)

$$\max\left(0, \mu - \frac{\gamma}{2} \sigma^2\right) < \beta^*$$
(all in safe or risky asset)
Verification

Lemma

Let q solve the HJB equation, and define $Q(y) = \int_y^y q(z)dz$. There exists a probability \hat{P}, equivalent to P, such that the terminal wealth X_T of any admissible strategy satisfies:

$$E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}},$$

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any β, for corresponding Q.
- Idea: pick largest β^* to make Q disappear in the long run.
- A priori bounds:

$$\beta^* < \frac{\mu^2}{2\gamma \sigma^2} \quad \text{(frictionless solution)}$$

$$\max \left(0, \mu - \frac{\gamma}{2} \sigma^2 \right) < \beta^* \quad \text{(all in safe or risky asset)}$$
Lemma

Let q solve the HJB equation, and define $Q(y) = \int^{y} q(z)dz$. There exists a probability \hat{P}, equivalent to P, such that the terminal wealth X_T of any admissible strategy satisfies:

$$E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}},$$

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any β, for corresponding Q.
- Idea: pick largest β^* to make Q disappear in the long run.
- A priori bounds:

 $$\beta^* < \frac{\mu^2}{2\gamma \sigma^2}$$
 (frictionless solution)

 $$\max \left(0, \mu - \frac{\gamma}{2} \sigma^2\right) < \beta^*$$
 (all in safe or risky asset)
Verification

Lemma

Let q solve the HJB equation, and define $Q(y) = \int^y q(z) dz$. There exists a probability \hat{P}, equivalent to P, such that the terminal wealth X_T of any admissible strategy satisfies:

$$E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}},$$

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any β, for corresponding Q.
- Idea: pick largest β^* to make Q disappear in the long run.
- A priori bounds:

$$\beta^* < \frac{\mu^2}{2\gamma\sigma^2} \quad \text{(frictionless solution)}$$

$$\max\left(0, \mu - \frac{\gamma}{2}\sigma^2\right) < \beta^* \quad \text{(all in safe or risky asset)}$$
Verification

Lemma

Let \(q \) solve the HJB equation, and define \(Q(y) = \int_y^\infty q(z)dz \). There exists a probability \(\hat{P} \), equivalent to \(P \), such that the terminal wealth \(X_T \) of any admissible strategy satisfies:

\[
E[X_T^{1-\gamma}]^{\frac{1}{1-\gamma}} \leq e^{\beta T + Q(y)} E_{\hat{P}}[e^{-(1-\gamma)Q(Y_T)}]^{\frac{1}{1-\gamma}},
\]

and equality holds for the optimal strategy.

- Solution of HJB equation yields asymptotic upper bound for any strategy.
- Upper bound reached for optimal strategy.
- Valid for any \(\beta \), for corresponding \(Q \).
- Idea: pick largest \(\beta^* \) to make \(Q \) disappear in the long run.
- A priori bounds:

\[
\beta^* < \frac{\mu^2}{2\gamma\sigma^2} \quad \text{(frictionless solution)}
\]

\[
\max\left(0, \mu - \frac{\gamma}{2}\sigma^2\right) < \beta^* \quad \text{(all in safe or risky asset)}
\]
Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0.
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1.
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0.
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1.
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- For $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0.
- For $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1.
- There exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- There exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- By continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0.
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1.
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0.
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1.
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Existence

Theorem

Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists β^* such that HJB equation has solution $q(y)$ with positive finite limit in 0 and negative finite limit in 1.

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0.
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1.
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Assume $0 < \frac{\mu}{\gamma \sigma^2} < 1$. There exists $\beta^* \text{ such that HJB equation has solution } q(y) \text{ with positive finite limit in 0 and negative finite limit in 1.}$

- for $\beta > 0$, there exists a unique solution $q_{0,\beta}(y)$ to HJB equation with positive finite limit in 0.
- for $\beta > \mu - \frac{\gamma \sigma^2}{2}$, there exists a unique solution $q_{1,\beta}(y)$ to HJB equation with negative finite limit in 1.
- there exists β_u such that $q_{0,\beta_u}(y) > q_{1,\beta_u}(y)$ for some y;
- there exists β_l such that $q_{0,\beta_l}(y) < q_{1,\beta_l}(y)$ for some y;
- by continuity and boundedness, there exists $\beta^* \in (\beta_l, \beta_u)$ such that $q_{0,\beta^*}(y) = q_{1,\beta^*}(y)$.
- Boundary conditions are natural!
Explosion with Leverage

Lemma

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t dt + \lambda Y_t |u_t|^{1+\alpha} dt$$

explodes in finite time with positive probability.

Lemma

Let τ be the exploding time of Y_t. Then wealth $X_\tau = 0$ a.s on $\{\tau < +\infty\}$.

- Feller's criterion for explosions.
- No strategy admissible if it begins with levered or negative position.
Explosion with Leverage

Lemma

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t dt + \lambda Y_t|u_t|^{1+\alpha} dt$$

explodes in finite time with positive probability.

Lemma

Let τ be the exploding time of Y_t. Then wealth $X_\tau = 0$ a.s on $\{\tau < +\infty\}$.

- Feller’s criterion for explosions.
- No strategy admissible if it begins with levered or negative position.
Explosion with Leverage

Lemma

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t dt + \lambda Y_t|u_t|^{1+\alpha} dt$$

explodes in finite time with positive probability.

Lemma

Let τ be the exploding time of Y_t. Then wealth $X_{\tau} = 0$ a.s on $\{\tau < +\infty\}$.

- Feller’s criterion for explosions.
- No strategy admissible if it begins with levered or negative position.
Explosion with Leverage

Lemma

If Y_t that satisfies $Y_0 \in (1, +\infty)$ and

$$dY_t = Y_t(1 - Y_t)(\mu dt - Y_t\sigma^2 dt + \sigma dW_t) + u_t dt + \lambda Y_t |u_t|^{1+\alpha} dt$$

explodes in finite time with positive probability.

Lemma

Let τ be the exploding time of Y_t. Then wealth $X_\tau = 0$ a.s on $\{\tau < +\infty\}$.

- Feller’s criterion for explosions.
- No strategy admissible if it begins with levered or negative position.
Conclusion

- Finite market depth. Execution price power of wealth turnover.
- Large investor with constant relative risk aversion.
- Base price geometric Brownian Motion.
- Halfway between linear impact and bid-ask spreads.
- Trade towards frictionless portfolio.
- Do not lever an illiquid asset!
Conclusion

- Finite market depth. Execution price power of wealth turnover.
- Large investor with constant relative risk aversion.
 - Base price geometric Brownian Motion.
 - Halfway between linear impact and bid-ask spreads.
 - Trade towards frictionless portfolio.
 - Do not lever an illiquid asset!
Conclusion

- Finite market depth. Execution price power of wealth turnover.
- Large investor with constant relative risk aversion.
- Base price geometric Brownian Motion.
- Halfway between linear impact and bid-ask spreads.
- Trade towards frictionless portfolio.
- Do not lever an illiquid asset!
Conclusion

• Finite market depth. Execution price power of wealth turnover.
• Large investor with constant relative risk aversion.
• Base price geometric Brownian Motion.
• Halfway between linear impact and bid-ask spreads.
• Trade towards frictionless portfolio.
• Do not lever an illiquid asset!
Conclusion

- Finite market depth. Execution price power of wealth turnover.
- Large investor with constant relative risk aversion.
- Base price geometric Brownian Motion.
- Halfway between linear impact and bid-ask spreads.
- Trade towards frictionless portfolio.
- Do not lever an illiquid asset!
Conclusion

- Finite market depth. Execution price power of wealth turnover.
- Large investor with constant relative risk aversion.
- Base price geometric Brownian Motion.
- Halfway between linear impact and bid-ask spreads.
- Trade towards frictionless portfolio.
- Do not lever an illiquid asset!