Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting

Thomas Kruse

based on joint work with Stefan Ankirchner, Monique Jeanblanc and Alexandre Popier

7th General AMaMeF and Swissquote Conference
September 8, 2015
Lausanne

Financial support from the French Banking Federation through the Chaire Markets in Transition is gratefully acknowledged.
Case study: Sell x shares of Adidas within T minutes using market orders.
Case study: Sell x shares of Adidas within T minutes using market orders.

<table>
<thead>
<tr>
<th>Symb</th>
<th>WKN</th>
<th>Name</th>
<th>Bid</th>
<th>Bid Vol</th>
<th>Bid</th>
<th>Ask</th>
<th>Ask Vol</th>
<th>Ask</th>
<th>Preis</th>
<th>Letzter Umsatz</th>
<th>Zeit Preis</th>
<th>Ph</th>
<th>Vortag</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>A1EWWW</td>
<td>adidas AG</td>
<td>83,680</td>
<td>133</td>
<td>12:33:29</td>
<td>CO</td>
<td>83,140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assumption (Almgren&Chriss):

$$S_{\text{mid}} - S_{\text{real}} = \eta z$$

- η: amount sold at time t
- z: price impact factor
Case study: Sell x shares of Adidas within T minutes using market orders.

Assumption (Almgren&Chriss):

$$S_t^{\text{mid}} - S_t^{\text{real}} = \eta z$$

z: amount sold at time t
η: price impact factor
Stochastic Liquidity

<table>
<thead>
<tr>
<th>Symb</th>
<th>WKN</th>
<th>Name</th>
<th>Bid Anz</th>
<th>Bid Vol in Stck</th>
<th>Bid</th>
<th>Ask Vol in StckAnz</th>
<th>Preis</th>
<th>Letzter Umsatz</th>
<th>Zeit Preis</th>
<th>Ph</th>
<th>Vortag</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADS</td>
<td>A1EWWW</td>
<td>adidas AG</td>
<td>397</td>
<td>84,840</td>
<td>84,880</td>
<td>312</td>
<td>2</td>
<td>84,890</td>
<td>89</td>
<td>12:38:40</td>
<td>CO</td>
</tr>
</tbody>
</table>

Bid/Ask Orders

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>876</td>
<td>84,870</td>
<td>84,900</td>
<td>281</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>455</td>
<td>84,860</td>
<td>84,910</td>
<td>392</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>494</td>
<td>84,850</td>
<td>84,920</td>
<td>275</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,187</td>
<td>84,840</td>
<td>84,930</td>
<td>1,040</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,408</td>
<td>84,830</td>
<td>84,940</td>
<td>889</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>602</td>
<td>84,820</td>
<td>84,950</td>
<td>994</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>760</td>
<td>84,810</td>
<td>84,960</td>
<td>358</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>84,800</td>
<td>84,970</td>
<td>631</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>929</td>
<td>84,790</td>
<td>84,980</td>
<td>922</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>639</td>
<td>84,780</td>
<td>84,990</td>
<td>974</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bid/Ask Orders

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>276</td>
<td>84,850</td>
<td>84,900</td>
<td>484</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>275</td>
<td>84,840</td>
<td>84,910</td>
<td>631</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>843</td>
<td>84,830</td>
<td>84,920</td>
<td>808</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>829</td>
<td>84,820</td>
<td>84,930</td>
<td>976</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,696</td>
<td>84,810</td>
<td>84,940</td>
<td>937</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>522</td>
<td>84,800</td>
<td>84,950</td>
<td>1,171</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>921</td>
<td>84,790</td>
<td>84,960</td>
<td>358</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>717</td>
<td>84,780</td>
<td>84,970</td>
<td>471</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>134</td>
<td>84,770</td>
<td>84,980</td>
<td>438</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>274</td>
<td>84,760</td>
<td>84,990</td>
<td>723</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case study: Sell x shares of Adidas within T seconds using market orders.

Assumption (Almgren&Chriss):

$$S_t^{\text{mid}} - S_t^{\text{real}} = \eta_t z$$

z: amount sold at time t
(η_t): price impact process
The model: Trading rates determine remaining position

- $T < \infty$: time horizon
- $x \in \mathbb{R}$: initial position
- X_t: position size at time $t \in [0, T]$:

 $$dX_t = x + \int_0^t \alpha_s ds + \int_0^t \beta_s dN_s$$

 - α_t: trading rate at time t.
 - β_t: amount placed as a passive order at time t
 - N: Poisson process with intensity $\mu > 0$

- **Constraint:** $X_T = 0$ on a set $S \in \mathcal{F}_T$.
A reduced form model à la Almgren & Chriss

\[E \left[\int_0^T \left(\eta_t |\alpha_t|^p + \lambda_t |\beta_t|^p + \gamma_t |X_t|^p \right) dt + \xi 1_{S^c} |X_T|^p \right] \longrightarrow \min \]

- \(p > 1 \) (\(q \) its Hölder conjugate)
- \((\eta_t), (\lambda_t), (\gamma_t) \): nonnegative, progressively measurable
- \(\xi \): nonnegative, \(\mathcal{F}_T \)-measurable random variable
- stochastic basis \((\Omega, \mathcal{F}, P, (\mathcal{F}_t))\) satisfying usual conditions
Related literature

- Schied 2013: Solves a variant of this problem in a Markovian framework using superprocesses

- Graewe, Horst, Séré 2015: Show smoothness of the value function in a Markovian framework

- Graewe, Horst, Qiu 2014: Analyze both Markovian and non-Markovian dependence of the coefficients by means of BSPDEs
A maximum principle

Let \((Y, \psi, M)\) satisfy

\[dY_t = \left((p - 1) \frac{Y_t^q}{\eta_{t-1}} + \Theta(t, Y_t, \psi_t) - \gamma_t \right) dt + \psi_t \, d\tilde{N}_t + dM_t \]

with \(\Theta\) Lipschitz continuous in \(y\) and \(\psi\)

\(M\) is a local martingale orthogonal to \(\tilde{N}\)

\(\lim_{t \to T} Y_t = \xi 1_{S^c} + \infty 1_S\).

Then the process given by

\[
X_t^* = x \exp \left[- \int_0^t \left(\frac{Y_u}{\eta_u} \right)^{q-1} \, du \right] \exp \left[(q - 1) \int_0^t \ln \left(\frac{\lambda_u}{Y_u - + \psi_u} \right) \, dN_u \right].
\]

is optimal and the value function is given by \(v(t, x) = Y_t x^p\).
BSDEs with singular terminal condition

Consider the BSDE

\[dY_t = -f(t, Y_t, \psi_t) dt + \int_{\mathcal{Z}} \psi_t(z) \tilde{\pi}(dz, dt) + dM_t \]

\[Y_T = \xi \]

where \(\tilde{\pi} \) is a compensated Poisson measure and \(P[\xi = \infty] > 0 \).

Central assumptions on \(f \):

- **monotonicity in \(y \):**

 \[(f(t, y, \psi) - f(t, y', \psi))(y - y') \leq \chi(y - y')^2. \]

- **Lipschitz continuity in \(\psi \):**

 \[|f(t, y, \psi) - f(t, y, \varphi)| \leq K\|\psi - \varphi\|_{L^2}. \]

Thomas Kruse

Singular BSDEs and applications to position targeting
Consider the BSDE

\[dY_t = -f(t, Y_t, \psi_t)dt + \int Z \psi_t(z)\tilde{\pi}(dz, dt) + dM_t \]

\[Y_T = \xi \]

where \(\tilde{\pi} \) is a compensated Poisson measure and \(P[\xi = \infty] > 0 \).

Central assumptions on \(f \):

- **monotonicity in \(y \):**
 \[
 (f(t, y, \psi) - f(t, y', \psi))(y - y') \leq \chi(y - y')^2.
 \]

- **Lipschitz continuity in \(\psi \):**
 \[
 |f(t, y, \psi) - f(t, y, \varphi)| \leq K\|\psi - \varphi\|_{L^2}.\]

- **at least polynomial growth in \(y \):**
 \[
 -f(t, y, \psi) \geq \frac{1}{\eta_t}|y|^q - f(t, 0, \psi), \quad y \geq 0, \quad q > 1.
 \]
Approximation from below

Consider the BSDE

\[dY_t^L = -f(t, Y_t^L, \psi_t)dt + \int_Z \psi_t^L(z)\tilde{\pi}(dz, dt) + dM_t^L \]

\[Y_T^L = \xi \land L \]

Theorem

For every \(L > 0 \) there exists a solution \((Y^L, \psi^L, M^L)\) to (1) satisfying the estimate

\[Y_t^L \leq \frac{K}{(T-t)^p} \left[E \left(\int_t^T \left(\eta_s^{p-1} + (T-s)^p f(s, 0, 0)^+ \right)' ds \bigg| \mathcal{F}_t \right) \right]^{1/l}. \]
Existence and Minimality

Theorem
There exists a process \((Y, \psi, M)\) such that for every \(t < T\) and as \(L \uparrow \infty\)

- \(Y_t^L \uparrow Y_t\) a.s.
- \(\psi^L \rightarrow \psi\) in \(L_\pi([0, t])\)
- \(M^L \rightarrow M\) in \(\mathcal{M}^l([0, t])\).

The process \((Y, \psi, M)\) satisfies

\[
dY_t = -f(t, Y_t, \psi_t)dt + \int_\mathcal{Z} \psi_t(z)\tilde{\pi}(dz, dt) + dM_t
\]

on \([0, t)\) and \(\lim \inf_{t \uparrow T} Y_t \geq \xi\). Moreover, \(Y\) is minimal.
Assume that

\[E \left[\int_0^T \gamma_t^2 \, dt \right] < \infty, \quad E \left[\int_0^T \eta_t^2 \, dt \right] < \infty \quad \text{and} \quad E \left[\int_0^T \frac{1}{\eta_t^{q-1}} \, dt \right] < \infty. \]

Corollary

There exists a minimal supersolution \((Y, \psi, M)\) to

\[dY_t = \left((p - 1) \frac{Y_t^q}{\eta_t^{q-1}} + \Theta(t, Y_t, \psi_t) - \gamma_t \right) \, dt + \psi_t \, d\tilde{N}_t + dM_t \quad (2) \]

with \(\lim \inf_{t \to T} Y_t \geq \xi 1_{S^c} + \infty 1_S \).
Optimal controls

\[E \left[\int_0^T \left(\eta_t |\alpha_t|^p + \lambda_t |\beta_t|^p + \gamma_t |X_t|^p \right) dt + \xi 1_{S^c} |X_T|^p \right] \rightarrow \min \]

Theorem

The process given by

\[X_t^* = x \exp \left[- \int_0^t \left(\frac{Y_u}{\eta_u} \right)^{q-1} du \right] \exp \left[(q - 1) \int_0^t \ln \left(\frac{\lambda_u}{Y_u + \psi_u} \right) dN_u \right]. \]

is optimal and the value function is given by \(v(t, x) = Y_t x^p. \)

The proof is based on a penalization argument.
Replace the deterministic time horizon T by a stopping time τ.

Consider the BSDE

$$dY_t = Y^2_t dt + dM_t$$

$Y_\tau = \infty$

with $E[1_\tau] = \infty$.

Consider first the terminal condition $Y_L^{\tau} = L$. Then one can show that $Y_L^0 \geq E[1_\tau + 1/L]$.

In particular $\lim \inf L \to \infty Y_L^0 \geq E[1_\tau] = \infty$.

Thomas Kruse
Singular BSDEs and applications to position targeting
Random execution period

Replace the deterministic time horizon \(T \) by a stopping time \(\tau \).

\textbf{Example}

\textit{Consider the BSDE}

\[
dY_t = Y_t^2 dt + dM_t \\
Y_\tau = \infty
\]

\textit{with} \(E \left[\frac{1}{\tau} \right] = \infty \).

\textit{Consider first the terminal condition} \(Y_\tau^L = L \). \textit{Then one can show that}

\[
Y_0^L \geq E \left[\frac{1}{\tau + 1/L} \right].
\]

\textit{In particular}

\[
\liminf_{L \to \infty} Y_0^L \geq E \left[\frac{1}{\tau} \right] = \infty.
\]
Let Γ be a diffusion in \mathbb{R}^d

$$d\Gamma_t = b(\Gamma_t)dt + \sigma(\Gamma_t)dW_t$$

with σ being uniformly elliptic. Let $D \subset \mathbb{R}^d$ be open and bounded with C^2-boundary. Define

$$\tau = \tau_D = \inf\{t \geq 0, \quad \Gamma_t \notin D\}.$$

Consider the BSDE

$$dY_t = -f(t, Y_t, \psi_t)dt + \int_Z \psi_t(z)\tilde{\pi}(dz, dt) + dM_t$$

$$Y_\tau = \xi$$
Random execution period

\[dY_t = -f(t, Y_t, \psi_t)dt + \int_{\mathcal{Z}} \psi_t(z)\tilde{\pi}(dz, dt) + dM_t \]

Consider first the terminal condition \(Y_T^L = \xi \land L \).

Theorem

For every \(L > 0 \) there exists a solution \((Y^L, \psi^L, M^L)\) satisfying the estimate

\[Y_t^L \leq \frac{C}{\text{dist}(\Gamma_t \land \tau)^{p-1}}. \]
Random execution period

\[dY_t = -f(t, Y_t, \psi_t)dt + \int_\mathcal{Z} \psi_t(z) \tilde{\pi}(dz, dt) + dM_t \]

Consider first the terminal condition \(Y_{\tau}^{L} = \xi \wedge L \).

Theorem

For every \(L > 0 \) there exists a solution \((Y^L, \psi^L, M^L)\) satisfying the estimate

\[Y_t^L \leq \frac{C}{\text{dist}(\Gamma_{t \wedge \tau})^{p-1}}. \]

Then we obtain existence of a minimal supersolution to the singular BSDE and optimal controls as before.
Processes with uncorrelated multiplicative increments

Definition

η has uncorrelated multiplicative increments (umi) if

$$E \left[\frac{\eta_t}{\eta_s} \mid \mathcal{F}_s \right] = E \left[\frac{\eta_t}{\eta_s} \right]$$

for all $s \leq t < T$.
Definition

\(\eta \) has uncorrelated multiplicative increments (umi) if

\[
E \left[\frac{\eta_t}{\eta_s} \mid \mathcal{F}_s \right] = E \left[\frac{\eta_t}{\eta_s} \right]
\]

for all \(s \leq t < T \).

Examples

- \(\eta \) is deterministic
- \(\eta \) is a martingale
- \(d\eta_t = \mu(t)\eta_t dt + \sigma(t, \eta_t)dW_t \)
- \(\eta_t = e^{Z_t} \) where \(Z \) is a Lévy process
Assume $\gamma = 0$ and $\mu = 0$.

Proposition

Suppose that η has umi, then

$$Y_t = \frac{1}{\left(\int_t^T \frac{1}{E[\eta_s|\mathcal{F}_t]^{q-1}} ds \right)^{p-1}}$$

is the minimal solution to (2) with singular terminal condition. The deterministic control

$$X_t = x \frac{1}{\int_0^T \frac{1}{E[\eta_s]^{q-1}} ds} \int_t^T \frac{1}{E[\eta_s]^{q-1}} ds$$

is optimal. In particular, if $p = 2$, then $\dot{X}_t = -c \frac{1}{E[\eta_t]}$.
Assume $\gamma = 0$ and $\mu = 0$.

Proposition

Suppose that η has umi, then

$$Y_t = \frac{1}{\left(\int_t^T \frac{1}{E[\eta_s|\mathcal{F}_t]^{q-1}} ds \right)^{p-1}}$$

is the minimal solution to (2) with singular terminal condition. The deterministic control

$$X_t = x \frac{1}{\int_0^T \frac{1}{E[\eta_s]^{q-1}} ds} \int_t^T \frac{1}{E[\eta_s]^{q-1}} ds$$

is optimal. In particular, if $p = 2$, then $\dot{X}_t = -c \frac{1}{E[\eta_t]}$.

Vice versa, assume that the optimal control $X_t = xe^{-\int_0^t (\frac{Y_s}{\eta_s})^{q-1} ds}$ is deterministic. Then η has umi.
Extensions

- Include directional views for the price process
- Incorporate volume uncertainty
Thank you!