Derivative Pricing using a Reduced Basis Method for Parameter Functions

Antonia Mayerhofer
joint work with Karsten Urban and Robert Stelzer

Research Training Group 1100 and Institute for Numerical Mathematics
Ulm University

Lausanne, 10 September 2015
Overview

Objective: fast derivative pricing

- Solving a pricing model for different parameters and payoff functions
- Application in model calibration process

Method: reduced basis method

- Model Reduction Method
- Partial Differential Equations
- Parameter dependent problems

Example: Heston model

- 2D parabolic PDE
- Affine model
Problem formulation

Consider the Itô diffusion
\[
dX_t = b(X_t)dt + \sigma(X_t)dB_t
\]
and the associated operator
\[
\mathcal{A}v(x) = \sum_i b_i(x) \frac{\partial v}{\partial x_i} + \frac{1}{2} \sum_{i,j} (\sigma \sigma^T)_{i,j}(x) \frac{\partial^2 v}{\partial x_i \partial x_j}.
\]

Feynman-Kac Formula

If \(v(t, x) \) is the solution of
\[
\frac{\partial v}{\partial t} = \mathcal{A}v \quad t > 0, \quad \text{with} \quad v(T, x) = f(x)
\]
then
\[
v(t, x) = E(f(X_T)|X_t = x).
\]
Problem formulation - Heston model

- European options
- Strike price K
- Underlying asset and volatility modelled stochastically \rightarrow **2D problem**
- Existence of closed form solution

Heston - SDE

$$dS_t = rS_t dt + \sqrt{v_t} S_t dz_1(t), \quad dv_t = \kappa [\theta - v_t] dt + \sigma \sqrt{v_t} dz_2(t)$$

- r: return rate of the asset
- σ: vol. of vol.
- θ: long term variance
- κ: mean reversion rate to θ
- z_1, z_2 Wiener processes with correlation ρ
Heston - PDE

- Transformation in time $t \rightarrow T - t$

Expected value given as solution of parabolic PDE in $z = (S, \nu)$

$$\frac{d}{dt} u - \sum_{i,j=1}^{2} A_{i,j} u_{z_i, z_j} - \sum_{i=1}^{2} b_i u_{z_i} + cu = 0$$

$$u(0) = \mu_0 \quad \text{(payoff)}$$

$$A = \frac{1}{2} \nu \begin{pmatrix} S^2 & \rho \sigma S \\ \rho \sigma S & \sigma^2 \end{pmatrix}, \quad b = \begin{pmatrix} Sr \\ \kappa \theta - \kappa \nu \end{pmatrix}, \quad c = r.$$

- Parameter $\rho, \sigma, \kappa, \theta$
- r is riskless interest rate (≈ 0)
- Parameter function μ_0
Space-Time Variational Formulation

- Weak formulation of PDE in space AND time
- Convenient for reduced basis method
- Solution $u(t, x)$ is a function in space AND time

Hilbert spaces $V \hookrightarrow H$ dense

$$X := \{ u \in L_2(0, T; V) : u' \in L_2(0, T; V') \}$$
$$Y := L_2(0, T; V) \times H.$$

For $A \in \mathcal{L}(V, V')$, $g \in L_2(0, T; V')$ find $u \in X \subset L_2(0, T; V)$

$$u'(t) + Au(t) = g \text{ in } L_2(0, T; V'), \quad u(0) = u_0. \quad (1)$$

$$\int_I \langle u'(t), v_1(t) \rangle_{V' \times V} dt + \int_I a(u(t), v_1(t)) dt + (u(0), v_2)_H$$

$$= \int_I \langle g(t), v_1(t) \rangle_{V' \times V} dt + (u_0, v_2)_H \quad \forall \ v = (v_1, v_2) \in Y. \quad (2)$$

Reduced Basis Method

Two introductions (2015)

For $\mu = (\mu_0, \mu_1) \in \mathcal{D}$

find $u(\mu) \in \mathcal{X}$ such that $b(u(\mu), v; \mu) = f(v; \mu)$ for all $v = (v_1, v_2) \in \mathcal{Y}$

$$b(u(\mu), v; \mu) = \int_I \langle \dot{u}(\mu)(t), v_1(t) \rangle_{V^\prime \times V} dt + \int_I a(u(\mu)(t), v_1(t); \mu_1) dt + (u(\mu)(0), v_2)_H, \quad f(v; \mu) = (\mu_0, v_2)_H.$$

Standard methods (FEM, FV, FD, ...) $\Rightarrow B_N(\mu) u_N(\mu) = f_N(\mu)$ (N large)

\Rightarrow computationally expensive for

- multi-query (e.g. calibration/optimisation),
- real time (e.g. pricing)
- parameter variations for every computation.

Approximate $\mathcal{X}_N \subset M = \{ u(\mu) | \mu \in \mathcal{D} \} \subset \mathcal{X} \Rightarrow B_N u_N = f_N$ ($N \ll N$).
Reduced Basis Method

- reduces large linear equation system to small one
- error analysis available
- best approximation results
Reduced Basis Method

- Offline:
 - For sample set \(\{ \mu_1, \ldots, \mu_N \} \) (Greedy procedure) pre-compute (FEM) “snapshots”
 \[u^N(\mu_1), \ldots, u^N(\mu_N) \]
 - \(X_N = \text{span}\{u^N(\mu_1), \ldots, u^N(\mu_N)\} \) (Reduced Basis Space) and test space \(Y_N \)

- Online: (complexity independent on \(N \))
 - For new \(\mu \notin \{ \mu_1, \ldots, \mu_N \} \) solve
 \[u_N(\mu) \in X_N : b(u_N(\mu), v; \mu) = f(v) \quad \forall v \in Y_N \]

Greedy procedure: \(M_{\text{train}} \subset D \). Choose a first \(\mu: \quad u^N(\mu), X_1 = \{u^N(\mu)\} \).

WHILE error > tol

\[\mu^* := \arg \max_{\mu \in M_{\text{train}}} \text{error}(u^N(\mu), u_N(\mu)) : \quad u^N(\mu^*), X_{N+1} := X_N \cup \{u^N(\mu^*)\}. \]
Space-Time Reduced Basis Method

- Online: one $N \times N$ linear system (no time stepping!)

- Good error estimator
 - residual based
 - can be efficiently computed
 - to be used in the Greedy procedure offline
 - control of the error online

$$
\beta(\mu) \| u - u_N \|_X \leq \sup_{v \in Y} \frac{b(u - u_N, v; \mu)}{\| v \|_Y} = \sup_{v \in Y} \frac{f(v) - b(u_N, v; \mu)}{\| v \|_Y}
$$

- Greedy works for $\mu \in \mathbb{R}^p$

Reduced basis depends on payoff μ_0!
Space-Time RBM for Parameter Functions

AM and Urban, *A reduced basis method for parabolic PDEs with parameter functions and application to option pricing* (to appear).

\[\mu \in H, \quad \text{Hilbert space} \]

Reduced basis for \(D_0 \times D_1 \subset H \times \mathbb{R}^p \) parameter domain?

\[
b(u(\mu), v; \mu) := \int_I \langle \dot{u}(\mu)(t), v_1(t) \rangle_{V' \times V} dt + \int_I a(u(\mu)(t), v_1(t); \mu_1) dt + (u(\mu)(0), v_2)_H,
\]

\[
f(v; \mu) := \int_I \langle g(t), v_1(t) \rangle_{V' \times V} dt + (\mu_0, v_2)_H.
\]

Assumption: \(D^\mathcal{L} \subset D \) finite description: \(\mu_0^\mathcal{L} = \sum_{\ell=1}^\mathcal{L} d_\ell(\mu_0) \delta_\ell \)

Split error estimator:

\[
\| u_N^\mathcal{N} (\mu) - u_N(\mu) \|_X \leq \frac{\| f(\cdot; \mu) - b(u_N(\mu), \cdot; \mu) \|_{V'}}{\beta_{LB}} = \Delta_N(\mu) \leq \Delta_0^N(\mu) + \Delta_1^N(\mu),
\]

\[
\Delta_0^N(\mu) := \frac{\| u_N(\mu)(0) - \mu_0 \|_H}{\beta_{LB}}, \quad \Delta_1^N(\mu) := \frac{\| g_1(\cdot) - b_1(u_N(\mu), \cdot; \mu) \|_{(L^2(I; V))'}}{\beta_{LB}}.
\]
Space-Time RBM for Parameter Functions - Offline Phase

- \(X^N = E_{\text{time}} \otimes V_{\text{space}}, \quad Y^N = (F_{\text{time}} \otimes V_{\text{space}}) \times V_{\text{space}} \)

\[u(\mu) = u^0(\mu_0) + w(\mu) \]

1st part \((\Delta_{N_0}^0 < \text{tol}_0)\):

- Only parameter function \(\mu_0 \)
- Find good sample \(\mu_0^1, \ldots, \mu_0^{N_0} \) (POD, Greedy)
- RB space \(H_{N_0} = \{h^1, \ldots, h^{N_0}\} \subset H \rightarrow \{\sigma^1\} \otimes H_{N_0} \subset X^N \)

Compute \(h_i \) for \(i = 1, \ldots, N_0 \):

\[(h_i, \phi_j)_H = (\mu_0^i, \phi_j)_H \forall \phi_j \in V_{\text{space}}, \quad u_0^i := \sigma^1 \otimes h_i \]

2nd part \((\Delta_{N_1}^1 < \text{tol}_1)\):

- Find good samples \(\{\mu^1, \ldots, \mu^{N_1}\} \subset D_0 \times D_1 \) (Evolution Greedy)
- RB space \(\mathbb{W}_{N_1} := \{w_1, \ldots, w_{N_1}\} \)

Compute \(w_j \) for \(\mu^j = (\mu_0^j, \mu_1^j) \):

\[b_1(w_j, z; \mu) = g_1(z) - b_1(u_{N_0}^0(\mu_0^j), z; \mu) \quad \forall \ z \in F_{\text{time}} \otimes V_{\text{space}}, \]
Space-Time RBM for Parameter Functions - Online Phase

For new \((\mu_0, \mu_1) \in D\).

1. Find \(\tilde{h}_{N_0}(\mu_0) \in H_{N_0}: (\tilde{h}_{N_0}(\mu_0), h^i)_H = (\mu_0, h^i)_H \quad \forall h^i \in H_{N_0}\)

2. Find \(w_{N_1}^1(\mu) \in W_{N_1}: b_1(w_{N_1}^1(\mu), v; \mu_1) = g_1(v) - b_1(\sigma^1 \otimes \tilde{h}_{N_0}(\mu_0), v; \mu_1) \quad \forall v \in Y_{N_1}^1\)

3. \(u_N(\mu) = \sigma^1 \otimes \tilde{h}_{N_0}(\mu_0) + w_{N_1}^1(\mu), \quad N = N_0 + N_1\)

- Construct reduced test space \(Y_N^1(\mu)\) for (inf-sup) stability (supremizers).
Numerical Experiments

- Heston model: $V = H_0^1(\Omega, \omega)$, $H = L_2(\Omega, \omega)$ (weighted Sobolev Spaces)

- $\Omega = \Omega_1 \times \Omega_2 \subset \mathbb{R}^2$

- $\Omega_1 := (0, 140) \cup [140, \infty)$, $\Omega_2 := (0, 1) \cup [1, \infty)$

- $\mu_1 = \rho, \kappa = 0.3313, \sigma = 0.6083, \theta = 0.1914$ and $r = 0$

- Parameter domain $[-0.5, 0.5] =: \mathcal{D}_1$

- $T = 1, \beta_{LB} = 0.003$

- $\mathcal{D}_0 \approx \mathcal{D}_0^L = \{\delta_1, \ldots, \delta_L\}$ pw. linear on $\mathcal{T}_{\Omega_1} = \{0, 70, 80, 90, 100, 110, 200\} \ (L = 7)$, const. on Ω_2 (exact for $K = 70, 80, \ldots$)

All RB calculations were implemented in RBmatlab, see http://www.morepas.org.

1st part: Initial Value: POD $\rightarrow \{h_1, \ldots, h_7\}$
2nd part: Evolution Greedy

\[M_{\text{train}} := \{ h_1, \ldots, h_7 \} \times \{ x_k = -0.5 + k \Delta s : k = 0, \ldots, 11, \Delta s = \frac{1}{11} \} \]
\[\subset \text{span}\{\delta_1, \ldots, \delta_7\} \times [-0.5, 0.5] \]

Evol. Greedy: Maximum error over iterations - error estimate \(\Delta_{N_1}^1 \) and true error.

Model Calibration

Market price observations V_1, \ldots, V_M for pairs $(T_i, \mu^i_0), i = 1, \ldots, M$

$$\min_{\mu_1} \sum_{i=1}^{M} (V_i - V(S, \nu, 0; T_i, (\mu^i_0, \mu_1)))^2$$

given $V(S, \nu, 0; T_i, (\mu^i_0, \mu_1)) = u((S, \nu), T_i; (\mu^i_0, \mu_1))$.

PDE-constraint optimisation using RBM

PDE-constraint optimisation with Space-Time RBM

Parameter functions:

\[
\begin{aligned}
&\min_{\mu_1} J(u^N(\mu_0, \mu_1)) \\
&\text{s.t. } u^N(\mu_0, \mu_1) \text{ solves PDE in space-time variational formulation}
\end{aligned}
\]

\[
\begin{aligned}
&\min_{\mu_1} J(u_N(\mu_0, \mu_1)) \\
&\text{s.t. } u_N(\mu_0, \mu_1) = u^0(\mu_1) + w^1(\mu_0, \mu_1) \text{ solution of two reduced problems}
\end{aligned}
\]

- Parameter dependence \(\mu_0(\mu_1)\) possible
- \(\|u^N(\mu) - u_N(\mu)\|_X \leq \text{RB-tol} \) and \(|J(u^N) - J(u_N)| \leq \text{tol}\)
- Gradient via sensitivity PDE

RB only as good as the high dimensional discretisation \(X^N\) and \(D_0^C\)!
A first Experiment

- **Matlab**: `lsqnonlin`: trust region, gradient approximated with finite differences
- NO sensitivity PDE
- Data: Call option on DAX, different time to maturity (≤ 1 year), different strike prices
- Calibration over ρ only
- Initial points in $[-0.5,0.5]$

<table>
<thead>
<tr>
<th></th>
<th>time</th>
<th>number of function calls</th>
<th>residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM-Sol./ Call</td>
<td>240.8082 sec.</td>
<td>6.3</td>
<td>78.1232</td>
</tr>
<tr>
<td>RB-Sol./ Call</td>
<td>58.9435 sec.</td>
<td>5</td>
<td>106.5772</td>
</tr>
</tbody>
</table>

- Speedup factor 4
Conclusion

- (parabolic) PDE
- No closed form solution needed
- Initial value is parameter
- Space-time RBM approach: two reduced basis’
- Speedups in e.g. calibration
Conclusion

- (parabolic) PDE
- No closed form solution needed
- Initial value is parameter
- Space-time RBM approach: two reduced basis’
- Speedups in e.g. calibration

Thank you for your attention!