Investors’ Attention and Stock Market Volatility

Daniel Andrei

Michael Hasler

swiss:finance:institute

Princeton Workshop, Lausanne 2011
Prerequisites
Prerequisites

Consider the dividend process $\frac{d\delta_t}{\delta_t} = f_t dt + \sigma_\delta dZ^\delta_t$:
Prerequisites

Consider the dividend process $\frac{d\delta_t}{\delta_t} = f_t dt + \sigma_\delta dZ^\delta_t$:

Price of the short-term asset

Price of the long-term asset
Prerequisites

Consider the dividend process \(\frac{d\delta_t}{\delta_t} = f_t dt + \sigma_\delta dZ^\delta_t \):
Motivation I

Source: Binsbergen et al. (forthcoming, AER 2011).
Our Aim

To show that the *fluctuating investors’ attention* explain the behavior of the short-term asset returns and of the market returns.
Our Aim

To show that the *fluctuating investors’ attention* explain the behavior of the short-term asset returns and of the market returns.

Our Model

A pure exchange Lucas economy with an unobservable fundamental and a signal (*flow of news*). The attention is modeled as the correlation between the unobserved fundamental and the signal.
Outline

I Model

II Results

III Conclusions
Outline

I Model

II Results

III Conclusions
The risky asset is a claim to the dividend process δ:

$$\frac{d\delta_t}{\delta_t} = f_t dt + \sigma_\delta dZ^\delta_t$$
• The risky asset is a claim to the dividend process δ:

$$\frac{d\delta_t}{\delta_t} = f_t dt + \sigma_\delta dZ^\delta_t$$

• The dividend expected growth rate, f, is unobservable and behaves according to:

$$df_t = \lambda \left(\bar{f} - f_t \right) dt + \sigma_f dZ^f_t$$
The risky asset is a claim to the dividend process δ:

$$\frac{d\delta_t}{\delta_t} = f_t dt + \sigma_\delta dZ^\delta_t$$

The dividend expected growth rate, f, is unobservable and behaves according to:

$$df_t = \lambda \left(\bar{f} - f_t \right) dt + \sigma_f dZ^f_t$$

The representative agent observes a signal, s, with the following dynamics:

$$ds_t = \Phi_t dZ^f_t + \sqrt{1 - \Phi_t^2} dZ^s_t$$
Investors’ Attention: A Sample Path

\[\frac{d\delta_t}{\delta_t} = f_t dt + \sigma_\delta dZ^\delta_t \]
Investors’ Attention: A Sample Path

\[\phi_t = \int_0^t e^{-\omega(t-u)} \frac{d\delta_u}{\delta_u} \]

\[\frac{d\delta_t}{\delta_t} = f_t dt + \sigma_\delta dZ_\delta^\delta \]
Investors’ Attention: A Sample Path

\[\Phi_t \equiv \frac{\psi}{\psi - (1 - \psi)e^{\Lambda(\phi_t - f/\omega)}} \]

\[\phi_t = \int_0^t e^{-\omega(t-u)} \frac{d\delta_u}{\delta_u} \]

\[\frac{d\delta_t}{\delta_t} = f_t dt + \sigma_\delta dZ^\delta_t \]
The dynamics of the post filtering state vector:

\[
\frac{d\delta_t}{\delta_t} = \hat{f}_t dt + (\sigma_\delta 0) dW_t
\]

\[
d\hat{f}_t = \lambda \left(\bar{f} - \hat{f}_t \right) dt + \left(\frac{\gamma_t}{\sigma_\delta} \sigma_f \Phi_t \right) dW_t
\]

\[
d\phi_t = \omega \left(\frac{\hat{f}_t}{\omega} - \phi_t \right) dt + (\sigma_\delta 0) dW_t
\]

\[
d\gamma_t = \left(\sigma_f^2 \left(1 - \Phi_t^2 \right) - 2\lambda \gamma_t - \frac{\gamma_t^2}{\sigma_\delta^2} \right) dt
\]
GMM Estimation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Std Error</th>
<th>t-stat</th>
<th>p-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_δ</td>
<td>0.015</td>
<td>0.001347</td>
<td>11.18</td>
<td>0</td>
</tr>
<tr>
<td>\bar{f}</td>
<td>0.026</td>
<td>0.002937</td>
<td>8.98</td>
<td>0</td>
</tr>
<tr>
<td>λ</td>
<td>0.861</td>
<td>0.290070</td>
<td>2.97</td>
<td>0.003</td>
</tr>
<tr>
<td>σ_f</td>
<td>0.057</td>
<td>0.005719</td>
<td>10.00</td>
<td>0</td>
</tr>
<tr>
<td>ω</td>
<td>0.201</td>
<td>0.017731</td>
<td>11.35</td>
<td>0</td>
</tr>
<tr>
<td>Λ</td>
<td>50.06</td>
<td>0.070254</td>
<td>712.66</td>
<td>0</td>
</tr>
<tr>
<td>ψ</td>
<td>0.524</td>
<td>0.052686</td>
<td>9.95</td>
<td>0</td>
</tr>
</tbody>
</table>
Equilibrium

- We compute the equilibrium using the techniques from Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989).
Equilibrium

- We compute the equilibrium using the techniques from Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989).
- The state vector is not affine ⇒ we perform an accurate quadratic approximation.

\[
S_t = E_t \int_0^\infty \xi_s \delta_s ds
\]

The stock return volatility is computed by applying Itô's lemma:

\[
\sigma_t = \frac{1}{S_t} \frac{\partial S_t}{\partial x_t} \text{diff}(x_T t)
\]
Equilibrium

- We compute the equilibrium using the techniques from Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989).
- The state vector is not affine \Rightarrow we perform an accurate quadratic approximation.
- After the approximation, we can use the theory of affine processes to compute the price of the risky asset:

$$S_t = \mathbb{E}_t \int_t^\infty \frac{\xi_s}{\xi_t} \delta_s ds$$
Equilibrium

- We compute the equilibrium using the techniques from Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989).
- The state vector is not affine \Rightarrow we perform an accurate quadratic approximation.
- After the approximation, we can use the theory of affine processes to compute the price of the risky asset:

$$S_t = \mathbb{E}_t \int_t^\infty \frac{\xi_s}{\xi_t} \delta_s ds$$

- The stock return volatility is computed by applying Itô’s lemma:

$$\sigma_t = \frac{1}{S_t} \frac{\partial S_t}{\partial x_t} \text{diff} \left(x_t^T \right)$$
Outline

I Model

II Results

III Conclusions
Fundamental Volatility and Market Volatility

![Scatter Plot and Linear Fit](image)

- **Scatter Plot**
- **Linear Fit**

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard Error</th>
<th>t Statistic</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.0003</td>
<td>-248.192</td>
<td>0</td>
</tr>
<tr>
<td>β</td>
<td>0.0054</td>
<td>633.573</td>
<td>0</td>
</tr>
</tbody>
</table>

$R^2 = 0.988$
Fundamental Volatility and Market Volatility

![Scatter Plot and Linear Fit](image)

Results

Fundamental Volatility and Market Volatility

Scatter Plot and Linear Fit

Estimation

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Standard Error</th>
<th>t Statistic</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.0704</td>
<td>-248.192</td>
<td>0</td>
</tr>
<tr>
<td>β</td>
<td>0.0003</td>
<td>-248.192</td>
<td>0</td>
</tr>
</tbody>
</table>

R-squared

- $R^2 = 0.988$
Fundamental Volatility and Market Volatility

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & Estimate & Standard Error & t Statistic & P-Value & \(R^2\) \\
\hline
\(\alpha\) & -0.0704 & 0.0003 & -248.192 & 0 & 0.988 \\
\(\beta\) & 3.43696 & 0.0054 & 633.573 & 0 & \\
\hline
\end{tabular}
\end{table}
Investors’ Attention and Market Volatility

![Scatter Plot with Quadratic Fit]

Estimate	Standard Error	t Statistic	P-Value
α | 0.0854 | 595.3390 | 0
β_1 | -0.0120 | -19.3191 | 0
β_2 | 0.0520 | 100.759 | 0
Investors’ Attention and Market Volatility

Results

Scatter Plot

Quadratic Fit

Estimate Standard Error t Statistic P-Value

$\alpha = 0.0854 \quad 0.0001 \quad 595.3390 \quad 0 \quad 0.979$

$\beta_1 = -0.0120 \quad 0.0006 \quad -19.3191 \quad 0$

$\beta_2 = 0.0520 \quad 0.0005 \quad 100.759 \quad 0$

Attention and Volatility

Andrei and Hasler

Princeton Workshop 2011
Results

Investors’ Attention and Market Volatility

![Scatter Plot with Quadratic Fit](scatter_plot.png)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t Statistic</th>
<th>P-Value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.0854</td>
<td>0.0001</td>
<td>595.3390</td>
<td>0</td>
<td>0.979</td>
</tr>
<tr>
<td>β_1</td>
<td>-0.0120</td>
<td>0.0006</td>
<td>-19.3191</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>β_2</td>
<td>0.0520</td>
<td>0.0005</td>
<td>100.759</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
One Simulated Path

![Graph showing the Simulated Path of Short Term Asset's Price and Dividend](image-url)
Short Term Asset Vol / Market Vol

![Scatter Plot](image)

- **Volatility Ratio**
- **Scatter Plot**
- **Linear Fit**

<table>
<thead>
<tr>
<th>Attention</th>
<th>Volatility Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.46</td>
</tr>
<tr>
<td>0.2</td>
<td>0.48</td>
</tr>
<tr>
<td>0.4</td>
<td>0.50</td>
</tr>
<tr>
<td>0.6</td>
<td>0.52</td>
</tr>
<tr>
<td>0.8</td>
<td>0.54</td>
</tr>
<tr>
<td>1</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Estimates

- **r^2**
 - 0.4553
 - 496.583
 - 0
 - 0.901
- **α**
 - 0.1008
 - 76.287
 - 0

Attention and Volatility Andrei and Hasler Princeton Workshop 2011
Short Term Asset Vol / Market Vol

Attention

Volatility Ratio

Scatter Plot

Linear Fit

Estimate t Statistic P-Value

α 0.4553 496.583 0 0.901

β 0.1008 76.287 0
Results

Short Term Asset Vol / Market Vol

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>t Statistic</th>
<th>P-Value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.4553</td>
<td>496.583</td>
<td>0</td>
<td>0.901</td>
</tr>
<tr>
<td>β_1</td>
<td>0.1008</td>
<td>76.287</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
CAPM: Short Term Asset

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>t Statistic</th>
<th>P-Value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0</td>
<td>-1.18122</td>
<td>0.237576</td>
<td>0.987</td>
</tr>
<tr>
<td>β_1</td>
<td>0.5297</td>
<td>604.211</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
CAPM: Short Term Asset

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>t Statistic</th>
<th>P-Value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0</td>
<td>-1.18122</td>
<td>0.237576</td>
<td>0.987</td>
</tr>
<tr>
<td>β_1</td>
<td>0.5297</td>
<td>604.211</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Return predictability: Market Returns

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>t Statistic</th>
<th>P-Value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.0165</td>
<td>4.8229</td>
<td>0</td>
<td>0.005</td>
</tr>
<tr>
<td>β_1</td>
<td>-0.0055</td>
<td>-4.732</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
CAPM: Short Term Asset

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>t Statistic</th>
<th>P-Value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0</td>
<td>-1.18122</td>
<td>0.237576</td>
<td>0.987</td>
</tr>
<tr>
<td>β_1</td>
<td>0.5297</td>
<td>604.211</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Return predictability: Market Returns

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>t Statistic</th>
<th>P-Value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.0165</td>
<td>4.8229</td>
<td>0</td>
<td>0.005</td>
</tr>
<tr>
<td>β_1</td>
<td>-0.0055</td>
<td>-4.732</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Return predictability: Short Term Asset Returns

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>t Statistic</th>
<th>P-Value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.0068</td>
<td>9.346</td>
<td>0</td>
<td>0.017</td>
</tr>
<tr>
<td>β_1</td>
<td>-0.0101</td>
<td>-8.982</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Outline

I Model

II Results

III Conclusions
Conclusions

- In a pure exchange economy with an unobservable fundamental, fluctuating attention generates GARCH effects both for the market returns and for the short-term asset returns.
- The volatility is low when the attention is low and vice versa.
- The short term asset volatility increases more with the attention than the stock volatility.
- The short-term asset has a β lower than 1 and its returns are predictable, as recent empirical results suggest.
- Additional implications that we explore in subsequent work: comovement of asset returns, amplification of the difference of beliefs.